Weak Kolchin Irreducibility for Arithmetic Jet Spaces
 Taylor Dupuy
 (with James Freitag and Lance E. Miller)

Kolchin (1970s)

X / \mathbf{C} irreducible $\Longrightarrow J_{\infty}(X)$ irreducible (singular)

Claim:

$$
\begin{aligned}
X / W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right) \\
\widehat{X} \text { irreducible } \\
+\varepsilon
\end{aligned} \Longrightarrow J_{p, \infty}(X) \text { weakly irreducible }
$$

$$
\exists Z \subset J_{p, \infty}(X)
$$

- Z is closed irreducible subset.
- Z contains an open.

Claim:

$X / W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)$
\widehat{X} irreducible
$J_{p, \infty}(X)$ weakly irreducible
$\exists h: Y \rightarrow X$
$X=\operatorname{Spec}(A)$

- Y smooth, \widehat{Y} irreducible.
- $Y\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right) \rightarrow X\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right)$ surjective

$$
\exists h: Y \rightarrow X
$$

- Y smooth, \widehat{Y} irreducible.

Includes

- X / R generically smooth.
- $X=\operatorname{Spec} R[x, y] /\left(y^{2}-x^{2}(x-1)\right)$

Excludes

- $X=\operatorname{Spec} R[x, y] /\left(y^{2}-x^{2}(x+p)\right.$
- $X=\operatorname{Spec} R[x, y, z] /\left(x^{p}=z y^{p}\right)$
- $X=\operatorname{Spec} R[x . y] /(x y-p)$

Background

- Let D_{1} : CRing \rightarrow CRing be the functor

$$
A \mapsto A[t] /\left(t^{2}\right) .
$$

- A derivation $A \rightarrow A$ is the same as a section of

$$
D_{1}(A) \rightarrow A
$$

Functor	Operation
D_{1}	Derivation
$W_{p, 1}$	p-Derivation
$A \mapsto A \oplus A$	Ring Endo
W big witt	λ-rings

- (Borger-Weiland 00s, Tall-Wraith 70s)

When \mathcal{R} is an affine ring scheme

$$
\mathcal{R}=\operatorname{Spec}(Q)
$$

there exists a left adjoint

$$
\operatorname{CRing}(Q \odot A, B)=\operatorname{CRing}(A, \mathcal{R}(B))
$$

- The bifunctor \odot is called the composition product
- For X a scheme define functor of jets

$$
J_{Q}(X):=X(\mathcal{R}(-)): \text { CRing } \rightarrow \text { Set }
$$

- If \mathcal{R} a comonad, then call it a functor of arcs.
- When functor representable, we call it a jet or arc space.

Jet Functor $J_{Q}(X)(A):=X(\mathcal{R}(A))$

- There exists a relative version of this construction as well.
- For a fixed action $Q \odot C \rightarrow C$ on a base we let

$$
J_{Q}(X / C, \rho)
$$

denote the relativized version.

Prolongations

$$
\begin{gathered}
\text { Q } \\
\underset{\uparrow}{\odot} A \longrightarrow \underset{\uparrow}{C} \\
Q \odot C \longrightarrow C
\end{gathered}
$$

Relative Jet Functors: $\quad J_{Q}(X / C, \rho)$

$$
J_{Q}(X / C, \rho)(B)=\{P \in X(\mathcal{R}(B)): \text { prolongation pt }\}
$$

$$
J_{Q}(X / C, \rho)
$$

Notations.

- $J_{n}(X / C, D)=$ nth order classical jet spaces
- $J_{\infty}(X / C, D)=$ classical arc spaces
- $J_{p, r}(X / C, \rho)=J_{p, r}(X)$ truncated p-jet spaces
- $J_{p, \infty}(X / C, \rho)=J_{p, \infty}(X) p$-arc spaces
- $\widehat{J}_{p, r}(X)$ and $\widehat{J}_{p, \infty}(X)$, Buium's p-formally completed version

Example.

$$
J_{1}(X / C, D)=\text { classical first order tangent space }
$$

$$
J_{1}(X / C)= \begin{cases}T_{X / C}, & D=\text { trivial } \\ \text { twisted } T_{X / C}, & D=\text { not trivial }\end{cases}
$$

- Let $X / \mathbf{C}[[t]]$ be defined by $x y=t$.

Consider $\mathbf{C}[[t]]$ as having a trivial derivation. The equations for $\left.J_{1}(X / \mathbf{C}[t]]\right) \subset \operatorname{Spec} \mathbf{C}[[t]]\left[x, y, x^{\prime} y^{\prime}\right]$ are $x y=t$ and $x^{\prime} y+y^{\prime} x=0$.

- Let $X / \mathbf{C}[t t]]$ be defined by $x y=t$.

Consider $\mathbf{C}[[t]]$ with its nontrivial derivation $D=d / d t$.
The equations of $\left.J_{\infty}(X / \mathbf{C}[t t]]\right)$ are then

$$
\begin{array}{r}
x y-t=0 \\
\dot{x} y+x \dot{y}-1=0 \\
\ddot{x} y+2 \dot{x} \dot{y}+x \ddot{y}=0
\end{array}
$$

- Let $f(x, y)=x y-t$.

Then we look to satisfy the equation

$$
0=\left(x_{0}+x_{1} \varepsilon+\cdots\right)\left(y_{0}+y_{1} \varepsilon+\cdots\right)-\exp (t)
$$

where $\exp (t)=t+\varepsilon$ given the system of equations

$$
\begin{aligned}
x_{0} y_{0}-t & =0 \\
x_{0} y_{1}+y_{0} x_{1}-1 & =0 \\
x_{0} y_{2}+2 x_{1} y_{1}+x_{2} y_{0} & =0
\end{aligned}
$$

- Special fiber of $J_{p, \infty}(X)$ example:

Let $X=\operatorname{Spec} R[x, y] /(x y-p)$.
Let
$x=\left(x_{0}, x_{1}, \ldots\right)$
$y=\left(y_{0}, y_{1}, \ldots\right)$
$p=(0,1,0, \ldots)$
Multiplication by p acts by translating to the right and p th powering

$$
\begin{aligned}
x_{0} y_{0} & =0 \\
x_{0}^{p} y_{1}+y_{0}^{p} x_{1} & =1 \\
m_{2} & =0
\end{aligned}
$$

and one can trivially see that $\operatorname{Gr}_{\infty}(X)=V\left(x_{0}\right) \cup V\left(y_{0}\right)$.

- Suppose now we are working ever R.

Then p is not $p \cdot 1$ in a ring where we replace everything by the witt vectors $\exp _{p}(p)=\left(p, 1-p^{p-1}, \ldots\right)$
which this means that $m_{i}(x, y)=\exp _{p}(p)_{i}$ whose reduction modulo p recover the previous ones. It is nontrivial to see that this scheme is irreducible.

example:

$$
\begin{aligned}
& y^{2}=x^{2}(x+1) \\
& \frac{\partial f}{\partial p}+\left(3 x^{2 p}+2 x^{p}\right) \dot{x}+p\left(3 x^{p}+1\right) \dot{x}^{2}+p^{2} \dot{x}^{4}=2 y^{p} \dot{y}+p \dot{y}^{2} \\
& \frac{\partial f}{\partial p}=\frac{f\left(x^{p}, y^{p}\right)-f(x, y)^{p}}{p} \\
& \quad \pi_{1}^{-1}(0,0) \quad \dot{y}^{2}=\dot{x}^{2}(1+p \dot{x})
\end{aligned}
$$

For the rest of the talk assume

X is affine.
(this deals with representability issues)

Moosa-Scanlon, Bhatt-Lurie, Borger

Classical Jet Spaces and Singularities

Why do we care about jet spaces?

Why do we care about jet spaces?

Example.

$$
\begin{aligned}
& X: x^{4}+y^{4}+z^{4}=0 \\
x= & x_{0}+x_{1} t+x_{2} t^{2}+x_{3} t^{3} \quad \bmod t^{4} \\
y= & y_{0}+y_{1} t+y_{2} t^{2}+y_{3} t^{3} \quad \bmod t^{4} \\
z= & z_{0}+z_{1} t+z_{2} t^{3}+z_{3} t^{3} \quad \bmod t^{4} \\
& x_{0}=y_{0}=z_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& x=x_{0}+x_{1} t+x_{2} t^{2}+x_{3} t^{3} \bmod t^{4} \\
& y=y_{0}+y_{1} t+y_{2} t^{2}+y_{3} t^{3} \bmod t^{4} \\
& z=z_{0}+z_{1} t+z_{2} t^{3}+z_{3} t^{3} \underbrace{\bmod t^{4}} \\
& \underbrace{\left(x_{0}=y_{0}=z_{0}=0\right.} \\
& X: x^{4}+y^{4}+z^{4}=0
\end{aligned}
$$

$$
\left(x_{1} t+x_{2} t^{2}+x_{3} t^{3}\right)^{4}+\left(y_{1} t+y_{2} t^{2}+y_{3} t^{3}\right)^{4}+\left(z_{1} t+z_{2} t^{3}+z_{3} t^{3}\right)^{4} \equiv 0
$$

$$
\begin{gathered}
\operatorname{dim} \pi_{4}^{-1}(0,0,0)=9 \\
(4+1) \operatorname{dim}(X)=5 \cdot 2=10 \\
4 \operatorname{dim}(X)=8
\end{gathered}
$$

Why do we care about jet spaces?

Why do we care about jet spaces?

Why do we care about jet spaces?

Kolchin (1970s)

Gillet, Mustata, de Fernex, Loeser-Sebag, Kolchin, NicaiseSebag, Ishii-Kollar, (Chambert-Loir)-Nicaise-Sebag

Proof of Kolchin Irreducibility

- Step I: Deformations = Irreducibility (general).
- Step 2: Smooth case.
- Step 3: Reduction to Smooth Case

Arc Deformations and Irreducibility

Step I:Deforming Arcs = Irreducibility

Kolchin (1970s)

X / C irreducible $\Longrightarrow J_{\infty}(X)$ irreducible (singular)

Claim:
Arc deformability \longleftrightarrow Irreducibility

Step I: Deforming Arcs = Irreducibility

Arcs:

$$
P \in J_{Q}(X)(A) \quad \leftrightarrow \quad \alpha \in X(\mathcal{R}(A))
$$

$\operatorname{Spec}(A) \xrightarrow{P} J(X)$

$$
P \in J_{Q}(X)(A)
$$

Step I:Deforming Arcs = Irreducibility

Arcs:

$$
\operatorname{Spec}(A) \xrightarrow{P} J(X)
$$

$P \in J_{Q}(X)(A) \leftrightarrow \alpha \in X(\mathcal{R}(A))$

Deformations: $\quad \alpha^{\prime} \in X\left(\mathcal{R}\left(A^{\prime}\right)\right)$

$$
\begin{aligned}
\eta_{\alpha}= & \text { generic of } \alpha(\operatorname{Spec}(\mathcal{R}(A))) \\
& \overline{\left\{\eta_{\alpha^{\prime}}\right\}} \ni \eta_{\alpha}
\end{aligned}
$$

Step I: Deforming Arcs = Irreducibility

Deformations:

Step I:Deforming Arcs = Irreducibility

Arcs:

$$
\operatorname{Spec}(A) \xrightarrow{P} J(X)
$$

$P \in J_{Q}(X)(A) \leftrightarrow \alpha \in X(\mathcal{R}(A))$

Deformations: $\quad \alpha^{\prime} \in X\left(\mathcal{R}\left(A^{\prime}\right)\right)$

$$
\begin{aligned}
\eta_{\alpha}= & \text { generic of } \alpha(\operatorname{Spec}(\mathcal{R}(A))) \\
& \overline{\left\{\eta_{\alpha^{\prime}}\right\}} \ni \eta_{\alpha}
\end{aligned}
$$

Step I: Deforming Arcs = Irreducibility

Arcs: $\quad P \in J_{Q}(X)(A) \quad \leftrightarrow \quad \alpha \in X(\mathcal{R}(A))$
Deformations:

$$
\begin{aligned}
& \alpha^{\prime} \in X\left(\mathcal{R}\left(A^{\prime}\right)\right) \\
& \eta_{\alpha}=\text { generic of } \alpha(\operatorname{Spec}(\mathcal{R}(A))) \\
& \overline{\left\{\eta_{\alpha^{\prime}}\right\}} \ni \eta_{\alpha}
\end{aligned}
$$

Arc Deformability:

$$
\begin{aligned}
\forall \alpha \in & X(\mathcal{R}(A))), \forall Y \subsetneq X, \exists \alpha^{\prime} \in X\left(\mathcal{R}\left(A^{\prime}\right)\right) \\
& \alpha^{\prime} \text { deforms } \alpha \\
& \alpha^{\prime} \text { generically outside } Y
\end{aligned}
$$

Step I:Deforming Arcs = Irreducibility

Arc Deformability:

Step I: Deforming Arcs = Irreducibility

$$
\begin{aligned}
\forall \alpha \in & X(\mathcal{R}(A))), \forall Y \subsetneq X, \exists \alpha^{\prime} \in X\left(\mathcal{R}\left(A^{\prime}\right)\right) \\
& \alpha^{\prime} \text { deforms } \alpha \\
& \alpha^{\prime} \text { generically outside } Y
\end{aligned}
$$

Step I:Deforming Arcs = Irreducibility

Deformation Idea

Arc deformability \longleftrightarrow Irreducibility

Simple Case:

- $\pi^{-1}(\operatorname{Sm}(X))$ nonempty.
- A a domain $\Longrightarrow \mathcal{R}(A)$ a domain.

Classical Kolchin Irreducibility

Step 2: Smooth Case (Classical)

Theorem.
X / C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible

Lemma.
$\quad X / \mathrm{C}$ smooth, irreducible $\Longrightarrow J_{r}(X)$ affine bundle

Step 2: Smooth Case (Classical)

Theorem.
X / C smooth, irreducible $\Longrightarrow J_{r}(X)$ irreducible
$J_{r}(X)$

proof assuming lemma:

$$
\pi_{r}^{-1}(U) \cong U \times \mathbf{A}^{(r+1) \operatorname{dim}(X)}
$$

$\mathcal{O}\left(\pi_{r}^{-1}(U)\right) \cong \mathcal{O}(U)[$ variables $]$ domain

Step 3: Reduction to Smooth Case (classical)

$$
\begin{gathered}
\overline{J_{\infty}(\operatorname{Sm}(X))}=J_{\infty}(X) \\
\text { irreducible }^{\text {in }}
\end{gathered}
$$

Step 3: Reduction to Smooth Case (classical) X / C

Step 3: Reduction to Smooth Case (classical)
X / C

Step 3: Reduction to Smooth Case (classical)

$\beta_{1} \in J_{\infty}(Y)$

$$
\beta_{1} \in \overline{J_{\infty}(\operatorname{Sm}(X))}=J_{\infty}(X)
$$

Recap of Classical

- Step I: Deformations = Irreducibility (general).
- Step 2: Smooth case (classical).
- Step 3: Reduction to Smooth Case
 (classical)

Step 2: Smooth Case (formal arithmetic)

Theorem. (Buium)
X / R smooth
$R=W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)$
$\widehat{J}_{p, r}(X) \rightarrow \widehat{X}$ an affine bundle

Corollary.

\widehat{X} irreducible $\Longrightarrow \widehat{J}_{p, r}(X)$ irreducible

Step 2: Smooth Case (formal arithmetic)

Corollary.

\widehat{X} irreducible $\Longrightarrow \widehat{J}_{p, r}(X)$ irreducible

Step 3: Reduction to Smooth Case

Alterations?? (Introduces Ramification)

Neron Smoothenings (Sebag-Loeser,Nicaise-(ChambertLoir)):

$$
\exists h: Y \rightarrow X
$$

- Y smooth, \widehat{Y} irreducible.
- $Y\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right) \rightarrow X\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right)$ surjective

$$
\exists Z \subset J_{p, \infty}(X)
$$

- Z is closed irreducible subset.
- Z contains an open.

Claim:

$X / W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)$
\widehat{X} irreducible
$J_{p, \infty}(X)$ weakly irreducible

$$
\exists h: Y \rightarrow X
$$

- Y smooth, \widehat{Y} irreducible.
- $Y\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right) \rightarrow X\left(W_{p, \infty}\left(\mathbf{F}_{p}^{a l g}\right)\right)$ surjective

THANK YOU

```
-1}(D
    pec K[[T]]
    pec L
        4=\operatorname{Frac}(K)
    \mp@subsup{k}{}{-1}(\operatorname{Sing}(X))
        {
```

$$
\begin{aligned}
& x^{p}=z y^{p} \\
& y^{2}=x^{2}(x+p) \\
& y^{2}=x^{2}(x-1)
\end{aligned}
$$

$$
\mathcal{R}=W_{p, \infty} \quad x \in J_{p, \infty}(X)
$$

X / R

$$
\kappa(x)
$$

$$
W_{p, \infty}(k)
$$

$$
\operatorname{char}(K) \neq p
$$

$$
\widetilde{X}(R) \rightarrow X(R)
$$

Spec $\mathcal{R}(B) \xrightarrow{s_{1}} X$

$\operatorname{Spec}(\mathcal{R}(C))$

$\lim _{n} J_{n}(X)$

$\operatorname{Spec}(\mathcal{R}(B))$
$Q \odot A$
$Q \odot C \quad J_{Q}(X)$
$\begin{array}{lll}B & \Lambda_{p, 1} & J_{Q}(X) \\ C & & \mathcal{R}=\operatorname{CRing}(Q,-)\end{array}$
$J_{1}(X)$

$$
\begin{aligned}
& x_{1}^{a}+\cdots+x_{n}^{a} \\
& n / a
\end{aligned}
$$

$$
\operatorname{lct}(X, D)
$$

Step 3: Reduction to Smooth Case (arithmetic)

$$
\begin{gathered}
\exp : D_{\infty} \rightarrow D_{\infty} \circ D_{\infty} \\
\exp _{A}: A[[t]] \rightarrow A[[T, S]] \\
t \mapsto T+S \\
f(t) \mapsto \sum_{n \geq 0} \frac{f^{(n)}(T)}{n!} S^{n} \\
\exp : W_{p, \infty} \rightarrow W_{p, \infty} \circ W_{p, \infty}
\end{gathered}
$$

