Weak Kolchin Irreducibility for Arithmetic Jet Spaces

Taylor Dupuy (with James Freitag and Lance E. Miller)

Kolchin (1970s)

X/\mathbf{C} irreducible $\implies J_{\infty}(X)$ irreducible (singular)

Claim:

$$\begin{array}{l} X/W_{p,\infty}(\mathbf{F}_p^{alg}) \\ \widehat{X} \text{ irreducible } \implies J_{p,\infty}(X) \text{ weakly irreducible} \\ +\varepsilon \end{array}$$

Friday, February 28, 14

$$\exists h: Y \to X$$
• Y smooth, \hat{Y} irreducible.
• $Y(W_{p,\infty}(\mathbf{F}_p^{alg})) \to X(W_{p,\infty}(\mathbf{F}_p^{alg}))$ surjective

Includes

• X/R generically smooth.

•
$$X = \operatorname{Spec} R[x, y] / (y^2 - x^2(x - 1))$$

Excludes

•
$$X = \operatorname{Spec} R[x, y] / (y^2 - x^2(x + p))$$

•
$$X = \operatorname{Spec} R[x, y, z]/(x^p = zy^p)$$

•
$$X = \operatorname{Spec} R[x.y]/(xy-p)$$

Background

- Let $D_1 : \operatorname{\mathsf{CRing}} \to \operatorname{\mathsf{CRing}}$ be the functor $A \mapsto A[t]/(t^2).$
- A derivation $A \to A$ is the same as a section of

$$D_1(A) \to A.$$

`

1

Functor	Operation
D_1	Derivation
$W_{p,1}$	p-Derivation
$A \mapsto A \oplus A$	Ring Endo
W big witt	$\lambda ext{-rings}$

• (Borger-Weiland 00s, Tall-Wraith 70s) When \mathcal{R} is an affine ring scheme $\mathcal{R} = \operatorname{Spec}(Q)$ there exists a left adjoint

$$\mathsf{CRing}(Q \odot A, B) = \mathsf{CRing}(A, \mathcal{R}(B)).$$

- \bullet The bifunctor \odot is called the $\ composition \ product$
- For X a scheme define functor of jets $J_Q(X) := X(\mathcal{R}(-)) : \mathsf{CRing} \to \mathsf{Set}$
- If \mathcal{R} a comonad, then call it a **functor of arcs**.
- When functor representable, we call it a **jet** or **arc space**.

Jet Functor $J_Q(X)(A) := X(\mathcal{R}(A))$

- There exists a relative version of this construction as well.
- For a fixed action $Q \odot C \to C$ on a base we let

 $J_Q(X/C,\rho)$

denote the relativized version.

Prolongations

$$\begin{array}{cccc} A & \stackrel{s_1}{\longrightarrow} \mathcal{R}(B) \\ \text{alg map} & & & & & & \\ & & & & & \\ C & \stackrel{s_0}{\longrightarrow} \mathcal{R}(C) \end{array} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Relative Jet Functors: $J_Q(X/C, \rho)$

 $J_Q(X/C,\rho)(B) = \{P \in X(\mathcal{R}(B)) : \text{ prolongation pt }\}$

$$J_Q(X/C,\rho)$$

Notations.

- $J_n(X/C, D) =$ nth order classical jet spaces
- $J_{\infty}(X/C, D) = \text{classical arc spaces}$
- $J_{p,r}(X/C, \rho) = J_{p,r}(X)$ truncated *p*-jet spaces
- $J_{p,\infty}(X/C,\rho) = J_{p,\infty}(X)$ p-arc spaces
- $\widehat{J}_{p,r}(X)$ and $\widehat{J}_{p,\infty}(X)$, Buium's *p*-formally completed version

Example.

$J_1(X/C, D) = \text{classical first order tangent space}$ $J_1(X/C) = \begin{cases} T_{X/C}, & D = \text{trivial} \\ \text{twisted } T_{X/C}, & D = \text{not trivial} \end{cases}$

- Let $X/\mathbb{C}[[t]]$ be defined by xy = t. Consider $\mathbb{C}[[t]]$ as having a trivial derivation. The equations for $J_1(X/\mathbb{C}[[t]]) \subset \text{Spec } \mathbb{C}[[t]][x, y, x'y']$ are xy = t and x'y + y'x = 0.
- Let X/C[[t]] be defined by xy = t.
 Consider C[[t]] with its nontrivial derivation D = d/dt.
 The equations of J_∞(X/C[[t]]) are then
 - xy t = 0
 - $\dot{x}y + x\dot{y} 1 = 0$
 - $\ddot{x}y + 2\dot{x}\dot{y} + x\ddot{y} = 0$

• Let f(x, y) = xy - t.

Then we look to satisfy the equation

$$0 = (x_0 + x_1\varepsilon + \cdots)(y_0 + y_1\varepsilon + \cdots) - \exp(t)$$

where $\exp(t) = t + \varepsilon$ given the system of equations

$$x_0 y_0 - t = 0$$

$$x_0 y_1 + y_0 x_1 - 1 = 0$$

$$x_0 y_2 + 2x_1 y_1 + x_2 y_0 = 0$$

- <u>Special fiber of</u> $J_{p,\infty}(X)$ example: Let $X = \operatorname{Spec} R[x, y]/(xy - p)$. Let $x = (x_0, x_1, \ldots)$ $y = (y_0, y_1, \ldots)$
 - $g = (g_0, g_1, \ldots)$ $p = (0, 1, 0, \ldots)$

Multiplication by p acts by translating to the right and pth powering

$$x_0 y_0 = 0$$
$$x_0^p y_1 + y_0^p x_1 = 1$$
$$m_2 = 0$$
$$\vdots \qquad \vdots$$

and one can trivially see that $\operatorname{Gr}_{\infty}(X) = V(x_0) \cup V(y_0)$.

• Suppose now we are working ever R.

Then p is not $p \cdot 1$ in a ring where we replace everything by the witt vectors

 $\exp_p(p) = (p, 1 - p^{p-1}, \ldots)$

which this means that $m_i(x, y) = \exp_p(p)_i$ whose reduction modulo p recover the previous ones. It is nontrivial to see that this scheme is irreducible.

example:

$$y^{2} = x^{2}(x+1)$$

$$\frac{\partial f}{\partial p} + (3x^{2p} + 2x^{p})\dot{x} + p(3x^{p} + 1)\dot{x}^{2} + p^{2}\dot{x}^{4} = 2y^{p}\dot{y} + p\dot{y}^{2}$$

$$\frac{\partial f}{\partial p} = \frac{f(x^{p}, y^{p}) - f(x, y)^{p}}{p}$$

$\pi_1^{-1}(0,0)$	$\dot{y}^2 = \dot{x}^2(1 + p\dot{x})$
$\pi_1^{-}(0,0)$	$y^{-} = x^{-}(1 + px)$

For the rest of the talk assume

X is affine.

(this deals with representability issues)

Moosa-Scanlon, Bhatt-Lurie, Borger

Classical Jet Spaces and Singularities

Example. $X: x^4 + y^4 + z^4 = 0$ $x = x_0 + x_1t + x_2t^2 + x_3t^3 \mod t^4$ $y = y_0 + y_1 t + y_2 t^2 + y_3 t^3 \mod t^4$ $z = z_0 + z_1 t + z_2 t^3 + z_3 t^3 \mod t^4$ $x_0 = y_0 = z_0 = 0$

 $(x_1t + x_2t^2 + x_3t^3)^4 + (y_1t + y_2t^2 + y_3t^3)^4 + (z_1t + z_2t^3 + z_3t^3)^4 \equiv 0$

$$\dim \pi_4^{-1}(0,0,0) = 9$$

$$(4+1)\dim(X) = 5 \cdot 2 = 10$$

$$4\dim(X) = 8$$

Gillet, Mustata, de Fernex, Loeser-Sebag, Kolchin, Nicaise-Sebag, Ishii-Kollar, (Chambert-Loir)-Nicaise-Sebag

Proof of Kolchin Irreducibility

 $J_r(X)$

- Step I: Deformations = Irreducibility (general).
- Step 2: Smooth case.

Arc Deformations and Irreducibility

Arcs:

$$P \in J_Q(X)(A) \quad \leftrightarrow \quad \alpha \in X(\mathcal{R}(A))$$

Deformations:
$$\alpha' \in X(\mathcal{R}(A'))$$

 $\eta_{\alpha} = \text{generic of } \alpha(\text{Spec}(\mathcal{R}(A)))$
 $\overline{\{\eta_{\alpha'}\}} \ni \eta_{\alpha}$

Deformations:

Deformations:
$$\alpha' \in X(\mathcal{R}(A'))$$

 $\eta_{\alpha} = \text{generic of } \alpha(\text{Spec}(\mathcal{R}(A)))$
 $\overline{\{\eta_{\alpha'}\}} \ni \eta_{\alpha}$

Step I: Deforming Arcs = Irreducibility Arcs: $P \in J_Q(X)(A) \iff \alpha \in X(\mathcal{R}(A))$ Deformations: $\alpha' \in X(\mathcal{R}(A'))$ $\eta_{\alpha} = \text{generic of } \alpha(\text{Spec}(\mathcal{R}(A)))$ $\overline{\{\eta_{\alpha'}\}} \ni \eta_{\alpha}$

Arc Deformability:

 $\begin{aligned} \forall \alpha \in X(\mathcal{R}(A))), \forall Y \subsetneq X, \exists \alpha' \in X(\mathcal{R}(A')) \\ \alpha' \text{ deforms } \alpha \\ \alpha' \text{ generically outside } Y \end{aligned}$

 $\forall \alpha \in X(\mathcal{R}(A))), \forall Y \subsetneq X, \exists \alpha' \in X(\mathcal{R}(A'))$ $\alpha' \text{ deforms } \alpha$ $\alpha' \text{ generically outside } Y$

Deformation Idea

Arc deformability ------ Irreducibility

Simple Case:

- $\pi^{-1}(\operatorname{Sm}(X))$ nonempty.
- A a domain $\implies \mathcal{R}(A)$ a domain.

Classical Kolchin Irreducibility

X/\mathbf{C}

Step 2: Smooth Case (Classical)

Theorem.

 X/\mathbf{C} smooth, irreducible $\implies J_r(X)$ irreducible

Lemma.

Step 2: Smooth Case (Classical)

Theorem.

X/C smooth, irreducible $\implies J_r(X)$ irreducible

proof assuming lemma: $\pi_r^{-1}(U) \cong U \times \mathbf{A}^{(r+1)\dim(X)}$

 X/\mathbf{C}

 $\mathcal{O}(\pi_r^{-1}(U)) \cong \mathcal{O}(U)[\text{ variables }]$ domain

Step 3: Reduction to Smooth Case (classical)

 $\beta_1 \in J_\infty(Y)$ $\beta_2 \in \pi^{-1}(Y)$

Step 3: Reduction to Smooth Case (classical)

 X/\mathbf{C}

Recap of Classical

 $J_r(X)$

- Step I: Deformations = Irreducibility (general).
- Step 2: Smooth case (classical).
- Step 3: Reduction to Smooth Case
 (classical) x

Step 2: Smooth Case (formal arithmetic)

 \widehat{X} irreducible $\Longrightarrow \widehat{J}_{p,r}(X)$ irreducible

Step 2: Smooth Case (formal arithmetic)

Step 3: Reduction to Smooth Case

Alterations?? (Introduces Ramification)

Neron Smoothenings (Sebag-Loeser, Nicaise-(Chambert-Loir)): $\exists h: Y \to X$

•
$$Y$$
 smooth, \widehat{Y} irreducible.

• $Y(W_{p,\infty}(\mathbf{F}_p^{alg})) \to X(W_{p,\infty}(\mathbf{F}_p^{alg}))$ surjective

Friday, February 28, 14

THANKYOU

Friday, February 28, 14

$$h^{-1}(D)$$

$$K =$$

$$\tilde{X}$$
Spec $K[[T]]$
Spec L

$$L = Frac(K)$$

$$h^{-1}(Sing(X))$$

$$h^{V} \underset{K \cong}{\mathbf{C}((T))^{alg}}_{K \cong Sing(X)}$$

$$h : X \to X$$

$$x^{p} = zy^{p}$$

$$y^{2} = x^{2}(x + p)$$

$$y^{2} = x^{2}(x - 1)$$

$$\mathcal{R} = W_{p,\infty} \quad x \in J_{p,\infty}(X)$$

$$X/R \quad \kappa(x)$$

$$K(x) \quad W_{p,\infty}(k)$$

$$\widetilde{X} \to X \quad \operatorname{char}(K) \neq p$$

$$\widetilde{X}(R) \to X(R)$$

Spec(
$$\mathcal{R}(C)$$
)
Spec($\mathcal{R}(B)$)
 $Q \odot A$
 $Q \odot C$ $J_Q(X)$
 B $\Lambda_{p,1}$ $J_Q(X)$
 C $\mathcal{R} = \mathsf{CRing}(Q, -)$
 $J_1(X)$

$x_1^a + \dots + x_n^a$ n/a

lct(X, D)

Step 3: Reduction to Smooth Case (arithmetic)

 $\exp: D_{\infty} \to D_{\infty} \circ D_{\infty}$ $\exp_{A}: A[[t]] \to A[[T, S]]$ $t \mapsto T + S$ $f(t) \mapsto \sum_{n \ge 0} \frac{f^{(n)}(T)}{n!} S^{n}$

 $\exp: W_{p,\infty} \to W_{p,\infty} \circ W_{p,\infty}$