
Some Arithmetic Deformation Theory

Taylor Dupuy

September 15, 2010

Taylor Dupuy Some Arithmetic Deformation Theory



Lifts of the Frobenius

Prop

If R is a ring of characteristic p then the map F : x 7→ xp is a ring
endomorphism.

Lift of Frobenius

A lift of the frobenius on R is a map σ : R→ R such that

σ(x) ≡ xp mod p.
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Absolute Frobenius

k perfect of characteristic p. X a smooth scheme defined over k,

Absolute Frobenius

Morphism of schemes
F : X → X

1 Identity on topological space

2 f 7→ fp on sheaf.

We are changing the sheaf:

OX(U)→ F∗OX(U)
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What is the Deligne-Illusie Class?

Obstruction to lift of frobenius mod p2.

Used in a paper by Deligne and Illusie in 1987 to give an
algebraic proof of Kodaira Vanishing’

H i(X,L⊗ ω) = 0 for i > 0

(for example in Hartshorne X is taken to be a nonsingular
projective variety over C)
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Deligne and Illusie Class

The Deligne-Illusie Obstruction

DIX ∈ H1( Xp︸︷︷︸
reduction modp

, F ∗TXp)︸ ︷︷ ︸
Frobenius Tangent Bundle

Xp = X ⊗R R/pR, R/pR perfect
Recall:

char(R) = p =⇒ ∃x 7→ xp; the frobenius always makes sense
in characteristic p.

θ ∈ Γ(U,F ∗TXp) means θ : O(U)→ O(U) with

θ(fg) = θ(f)gp + fpθ(g)

θ(f + g) = θ(f) + θ(g)
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Obstruction

Theorem

DIX = 0 ⇐⇒ OX admits a lift of the frobenius mod p2

Lift: σ : OX ⊗R R/p2R→ OX ⊗R R/p2R such that σ(f) ≡ fp
mod p.
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Construction of DIX

X smooth scheme over R.
R admits a lift of the frobenius, and R/pR a perfect field.

1 Cover X by affine open sets Xi. (still smooth).
2 Lift of the frobenius to Xi. (by smoothness)

We want to determine how these patch:

Prop

1 x 7→
(
σi(x)−σj(x)

p

)
mod p derivation of F .

2

(
σi−σj
p mod p

)
∈ Z1(Xp, F

∗TXp). Actually a well-defined

class.

PROBLEM:

Lift this cocycle to characteristic zero.

Recipient Class? Mod
Ẑur
p

(O,O) (Explain later)
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Alternative Viewpoint on Lifts of the Frobenius

Prop

R a ring
∃σ : R→ R ⇐⇒ ∃δ : R→ R

δ a p-derivation

(Not Actually True)

R has σ ⇐= R has δ (1)

R has σ =⇒ R has δ, When R is p-torsion free (2)
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What is a p-derivation?

Given a σ:

δ(x) :=
σ(x)− xp

p︸ ︷︷ ︸
“ratio of two zeros in characteristic p ”

Given a δ

σ(x) = xp + pδ(x)
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What is a p-derivation?

WARNING: p-derivations are nonlinear.

δ(xy) = δ(x)yp + xpδ(y) + pδ(x)δ(y)

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p

(WARNING: not even linear mod p)

Example:

δ(
1

x
) =

1

xp
1

1 + p δ(x)xp
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Reinterpretation of DIX

DI revisited:

σi(x)− σj(x)

p
=

(xp + pδi(x))− (xp + pδj(x))

p

= δi(x)− δj(x)

Prop

Differences of p-derivations are derivations of the frobenius
when reduced mod p.

They are Ẑur
p linear maps.

As before: unreduced are they a cocycle in the sheaf defined by
U 7→ Nat(O|U ,O|U ) “Sheaf Hom”?
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Reynaud’s Theorem

Theorem

If C is a smoooth projective curve of genus g ≥ 2 then C does not
admit a lift of the frobenius for all primes p.

(Say defined over Z then get C over Ẑur
p by base extension).

Easier Examples:

Affine X. Always

g(P1) = 0. yes

E. sometimes

A. sometimes
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p by base extension).

Easier Examples:

Affine X. Always

g(P1) = 0. yes

E. sometimes

A. sometimes

Taylor Dupuy Some Arithmetic Deformation Theory



Summary

X/R smooth scheme
R is p-torsion free
R/pR perfect
σ : R→ R lift of the frobenius.

QUESTION:

When does X admit a lift of the absolute frobenius frobenius
agreeing with σ on R?

PARTIAL ANSWER:

Necessary condition: DIX = 0.
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HOW IS DIX A DEFORMATION CLASS?
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A Similar Construction using Derivations

FUNCTION FIELD SETTING
Let X/R be a smooth scheme and where R. has a derivation
δ.

Cover X by affine open subsets Xi
∼= Spec(O(Xi)).

Xi ⊂ X −→π Spec(R) still smooth.

The derivation δ : R→ R lifts (nonuniquely) to a derivation
δi : O(Xi)→ O(Xi)

The differences δi − δj give an R-linear derivation. These give a
cohomology class

[δi − δj ] ∈ H1(X,TX).
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A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

KSX/R : Der(R,R)→ H1(X,TX).

Theorem

The following are equivalent

1 KS(δ) = 0

2 J1(X) ∼= TX

3 X descends to Rδ = {r ∈ R : δ(r) = 0} meaning

X ∼= X0 ⊗Rδ R

where X0 is some schemes defined over Rδ.

When X is a variety, R = C(x) defining equations have
coefficients in C.
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Some Nonsense:

Vague (and popular) Analogy is employed:

KS = 0↔ DI = 0

Interpretation: When trying to modify theorems in the function
field setting, view a lift of the frobenius which keeps the topology
fixed as “descent to F1”.
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WHERE IS THE DEFORMATION THEORY?

KSext denote the class before.

We are now going to define KSext.
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PREPARATIONS

Let X over S be a smooth and flat. We view it as a family of
varieties

XP := X⊗S κS(P )

Important Examples

E

��

Cg

��

A

��

A1 Mn
g N

(n)
1,g

Taylor Dupuy Some Arithmetic Deformation Theory



PREPARATIONS

Let X over S be a smooth and flat. We view it as a family of
varieties

XP := X⊗S κS(P )

Important Examples

E

��

Cg

��

A

��

A1 Mn
g N

(n)
1,g

Taylor Dupuy Some Arithmetic Deformation Theory



External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle

(and well
defined cohomology class):

KSext : TPS → H1(XP , TXP ).

1 Let δP ∈ TPS
2 Fatten to some open affine neighborhood U of S which

contains P . Call the extended derivation δ.

3 Cover X by affine Xi,get δi
4 θij := (δi − δj) are completely vertical (they vanish under
π∗ = dπ and hence restrict to cocycles on the fiber)

KSext(δP ) := [δi − δj ] ∈ H1(Xp, TXp).
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Link Between Internal and External

X be defined over a function field K
Deformation + Derivation on Base:

X

��

Xoo

��
S Spec(K)oo︸ ︷︷ ︸

model of X

, δ : O(S)→ O(S)

Let κS( generic pt of S) = K.
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Construct η ∈ H1(X, TX) by lifting the δ on affine open sets
as we have been doing previously.

Spectializing η at the generic points gives KSext

η ⊗ κ( generic) = KSext

Specializing η at the closed points gives the external
construction

η ⊗ κ(closed point P ) = KSext
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Remark: There is a third way to get the map using the relative
tangent sequence. Specializing that map gives different versions of
this map.
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More than Just an Analogy

Theorem (DI can detect deformation theoretic information)

If A is an abelian variety then

F ∗KSext = DI

PROBLEM: Find external constructions in the p-derivation setting.
And relate them to known classes.
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Infinitesimal Deformations

“The Kodaira Spencer map for any deformation factors through
infinitesimal deformations.”

Xε

��

Xoo

��
Spec(k[ε]) Spec(k)oo

Lemma

For all deformations families of X and choice tangent vector at a
point who fiber is X, there exists an infinitesimal deformation that
gives rise to the same cohomology class.
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Infinitesimal Deformation

Define a functor

DefX : { Local Artin Rings } → Sets

where

DefX(A) =
{X→ Spec(A),X⊗

∼

Prop

DefX(K[ε])↔ H1(X,TX)
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Factoring properties

Differentiation

R //

��>
>>

>>
>>

> D1(R)

||xx
xx

xx
xx

x
R[ε]

R

Wittferentiation

R //

��>
>>

>>
>>

> W1(R)

||xx
xx

xx
xx

x

R

These allow lifting of derivations and p-derivations for smooth
maps.
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Wittfinitesimal Deformations

We can construct a map similar to the one for wittfinitesimals in
the case when char(k) = p

Def(Wp(k))→ H1(X,F ∗TX).

PROBLEM:

Understand the wittfinitesimal deformations. Understand
wittfinitesimal versions of the torelli map.
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The Big Class

Big Class

BX ∈ H1(X p̂,Aut(A1)p̂)

(that is terrible to TEX)

Let X be a smooth scheme over
Wp∞(Fp) = Ẑur

p︸︷︷︸
has unique lift of frob

.

Define cohomology class in the sheaf Aut(A1)p̂) via the local
trivializations of the jet space.
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The Big Class

[Jet Rings and Globalizing]

Taylor Dupuy Some Arithmetic Deformation Theory



The Big Nasty Class

What the sheaf looks like (hat’s omitted):

Γ(U,Aut(A1)p̂) =


ϕ : U × A1 //

##GG
GG

GG
GG

G U × A1

{{ww
ww

ww
ww

w

U


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The Big Class

The cocycle is induced by transition maps between trivializations
Let Xi ⊂ X be trivializing sets

If X is smooth over Ẑur
p of relative dimension d then

Jn(Xi)→∼ Xi × Adn

*Characteristic Zero
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The Big Class

What does the B actually look like?

Let X = C a curve and n = 1.

O(Ĉi×̂Â1) = O(Ci)[ẋ]p̂

consisting of restricted powerseries
∑∞

j=0 fj ẋ
j satisfing |fj |p → 0

as p→∞.
***Transition maps happen by plugging in restricted power series.
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The Big Class

Lemma

Let R be a ring of characteristic p. Then

AutR(R[x]) ∼= AL1(R).

The automorphisms look like

f(x) 7→ f(ax+ b)

where a ∈ R× and b ∈ R.
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The Big Class Controls DI

When we reduce the cocycle in Aut(Â1)⊗
Ẑur
p

Fp ∼= AL1.

AL1 = Gm nGa

βij = cij︸︷︷︸
gives [F ∗TX]∈H1(C,O×)

ẋ+ dij︸︷︷︸
givesDI
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PROBLEM

We want to show B(X) is nontrivial.
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