Some Arithmetic Deformation Theory

Taylor Dupuy

September 15, 2010

Lifts of the Frobenius

Prop
If R is a ring of characteristic p then the map $F: x \mapsto x^{p}$ is a ring endomorphism.

Lift of Frobenius

A lift of the frobenius on R is a map $\sigma: R \rightarrow R$ such that

$$
\sigma(x) \equiv x^{p} \quad \bmod p
$$

Absolute Frobenius

k perfect of characteristic $p . X$ a smooth scheme defined over k,
Absolute Frobenius
Morphism of schemes

$$
F: X \rightarrow X
$$

(1) Identity on topological space
(2) $f \mapsto f^{p}$ on sheaf.

Absolute Frobenius

k perfect of characteristic $p . X$ a smooth scheme defined over k,
Absolute Frobenius
Morphism of schemes

$$
F: X \rightarrow X
$$

(1) Identity on topological space
(2) $f \mapsto f^{p}$ on sheaf.

Absolute Frobenius

k perfect of characteristic $p . X$ a smooth scheme defined over k,
Absolute Frobenius
Morphism of schemes

$$
F: X \rightarrow X
$$

(1) Identity on topological space
(2) $f \mapsto f^{p}$ on sheaf. We are changing the sheaf:

$$
\mathcal{O}_{X}(U) \rightarrow F_{*} \mathcal{O}_{X}(U)
$$

What is the Deligne-Illusie Class?

- Obstruction to lift of frobenius $\bmod p^{2}$.
- Used in a paper by Deligne and Illusie in 1987 to give an algebraic proof of Kodaira Vanishing'

$$
H^{i}(X, L \otimes \omega)=0 \text { for } i>0
$$

What is the Deligne-Illusie Class?

- Obstruction to lift of frobenius $\bmod p^{2}$.
- Used in a paper by Deligne and Illusie in 1987 to give an algebraic proof of Kodaira Vanishing'

$$
H^{i}(X, L \otimes \omega)=0 \text { for } i>0
$$

(for example in Hartshorne X is taken to be a nonsingular projective variety over \mathbb{C})

Deligne and Illusie Class

Deligne and Illusie Class

The Deligne-Illusie Obstruction

$$
\mathrm{DI}_{X} \in H^{1}(\underbrace{X_{p}}_{\text {reduction } \bmod _{p}}, \underbrace{\left.F^{*} T X_{p}\right)}_{\text {Frobenius Tangent Bundle }}
$$

$X_{p}=X \otimes_{R} R / p R, R / p R$ perfect

Deligne and Illusie Class

The Deligne-Illusie Obstruction

$$
\mathrm{DI}_{X} \in H^{1}(\underbrace{X_{p}}_{\text {reduction } \bmod _{p}}, \underbrace{\left.F^{*} T X_{p}\right)}_{\text {Frobenius Tangent Bundle }}
$$

$X_{p}=X \otimes_{R} R / p R, R / p R$ perfect

Deligne and Illusie Class

The Deligne-Illusie Obstruction

$$
\mathrm{DI}_{X} \in H^{1}(\underbrace{X_{p}}_{\text {reduction } \bmod _{p}}, \underbrace{\left.F^{*} T X_{p}\right)}_{\text {Frobenius Tangent Bundle }}
$$

$X_{p}=X \otimes_{R} R / p R, R / p R$ perfect
Recall:

- $\operatorname{char}(R)=p \Longrightarrow \exists x \mapsto x^{p}$; the frobenius always makes sense in characteristic p .
- $\theta \in \Gamma\left(U, F^{*} T X_{p}\right)$ means $\theta: \mathcal{O}(U) \rightarrow \mathcal{O}(U)$ with

$$
\begin{aligned}
\theta(f g) & =\theta(f) g^{p}+f^{p} \theta(g) \\
\theta(f+g) & =\theta(f)+\theta(g)
\end{aligned}
$$

Obstruction

Obstruction

Theorem $\mathrm{DI}_{X}=0 \Longleftrightarrow \mathcal{O}_{X}$ admits a lift of the frobenius $\bmod p^{2}$

Obstruction

Theorem
$\mathrm{DI}_{X}=0 \Longleftrightarrow \mathcal{O}_{X}$ admits a lift of the frobenius $\bmod p^{2}$
Lift: $\sigma: \mathcal{O}_{X} \otimes_{R} R / p^{2} R \rightarrow \mathcal{O}_{X} \otimes_{R} R / p^{2} R$ such that $\sigma(f) \equiv f^{p}$ $\bmod p$.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.
(2) $\left(\frac{\sigma_{i}-\sigma_{j}}{p} \bmod p\right) \in Z^{1}\left(X_{p}, F^{*} T X_{p}\right)$.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.
(2) $\left(\frac{\sigma_{i}-\sigma_{j}}{p} \bmod p\right) \in Z^{1}\left(X_{p}, F^{*} T X_{p}\right)$. Actually a well-defined class.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.
(2) $\left(\frac{\sigma_{i}-\sigma_{j}}{p} \bmod p\right) \in Z^{1}\left(X_{p}, F^{*} T X_{p}\right)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.
(2) $\left(\frac{\sigma_{i}-\sigma_{j}}{p} \bmod p\right) \in Z^{1}\left(X_{p}, F^{*} T X_{p}\right)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.
(2) $\left(\frac{\sigma_{i}-\sigma_{j}}{p} \bmod p\right) \in Z^{1}\left(X_{p}, F^{*} T X_{p}\right)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.
Recipient Class?

Construction of DI_{X}

X smooth scheme over R.
R admits a lift of the frobenius, and $R / p R$ a perfect field.
(1) Cover X by affine open sets X_{i}. (still smooth).
(2) Lift of the frobenius to X_{i}. (by smoothness)

We want to determine how these patch:
Prop
(1) $x \mapsto\left(\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}\right) \bmod p$ derivation of F.
(2) $\left(\frac{\sigma_{i}-\sigma_{j}}{p} \bmod p\right) \in Z^{1}\left(X_{p}, F^{*} T X_{p}\right)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.
Recipient Class? $\operatorname{Mod}_{\widehat{\mathbb{Z}}}(\mathcal{O r}, \mathcal{O})$ (Explain later)

Alternative Viewpoint on Lifts of the Frobenius

Prop
R a ring

$$
\exists \sigma: R \rightarrow R \Longleftrightarrow \exists \delta: R \rightarrow R
$$

δ a p-derivation

Alternative Viewpoint on Lifts of the Frobenius

Prop
R a ring

$$
\exists \sigma: R \rightarrow R \Longleftrightarrow \exists \delta: R \rightarrow R
$$

δ a p-derivation
(Not Actually True)

Alternative Viewpoint on Lifts of the Frobenius

Prop
R a ring

$$
\exists \sigma: R \rightarrow R \Longleftrightarrow \exists \delta: R \rightarrow R
$$

δ a p-derivation
(Not Actually True)

Alternative Viewpoint on Lifts of the Frobenius

Prop
R a ring

$$
\exists \sigma: R \rightarrow R \Longleftrightarrow \exists \delta: R \rightarrow R
$$

δ a p-derivation
(Not Actually True)

$$
\begin{equation*}
R \text { has } \sigma \Longleftarrow R \text { has } \delta \tag{1}
\end{equation*}
$$

Alternative Viewpoint on Lifts of the Frobenius

Prop
R a ring

$$
\exists \sigma: R \rightarrow R \Longleftrightarrow \exists \delta: R \rightarrow R
$$

δ a p-derivation
(Not Actually True)

$$
\begin{align*}
R \text { has } \sigma & \Longleftrightarrow R \text { has } \delta \tag{1}\\
R \text { has } \sigma & \Longrightarrow R \text { has } \delta,
\end{align*}
$$

Alternative Viewpoint on Lifts of the Frobenius

Prop
R a ring

$$
\exists \sigma: R \rightarrow R \Longleftrightarrow \exists \delta: R \rightarrow R
$$

δ a p-derivation
(Not Actually True)

$$
\begin{align*}
R \text { has } \sigma & \Longleftrightarrow R \text { has } \delta \tag{1}\\
R \text { has } \sigma & \Longrightarrow R \text { has } \delta, \quad \text { When } R \text { is p-torsion free }
\end{align*}
$$

What is a p-derivation?

What is a p-derivation?

Given a σ :

$$
\delta(x):=\underbrace{\frac{\sigma(x)-x^{p}}{p}}_{\text {"ratio of two zeros in characteristic } p \text { " }}
$$

What is a p-derivation?

Given a σ :

$$
\delta(x):=\underbrace{\frac{\sigma(x)-x^{p}}{p}}_{\text {"ratio of two zeros in characteristic } p \text { " }}
$$

Given a δ

$$
\sigma(x)=x^{p}+p \delta(x)
$$

What is a p-derivation?

WARNING: p-derivations are nonlinear.

$$
\begin{aligned}
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(x+y) & =\delta(x)+\delta(y)+\frac{x^{p}+y^{p}-(x+y)^{p}}{p}
\end{aligned}
$$

What is a p-derivation?

WARNING: p-derivations are nonlinear.

$$
\begin{aligned}
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(x+y) & =\delta(x)+\delta(y)+\frac{x^{p}+y^{p}-(x+y)^{p}}{p}
\end{aligned}
$$

(WARNING: not even linear mod p)

What is a p-derivation?

WARNING: p-derivations are nonlinear.

$$
\begin{aligned}
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(x+y) & =\delta(x)+\delta(y)+\frac{x^{p}+y^{p}-(x+y)^{p}}{p}
\end{aligned}
$$

(WARNING: not even linear $\bmod p$)
Example:

$$
\delta\left(\frac{1}{x}\right)=\frac{1}{x^{p}} \frac{1}{1+p \frac{\delta(x)}{x^{p}}}
$$

Reinterpretation of DI_{X}

DI revisited:

Reinterpretation of DI_{X}

DI revisited:

$$
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}
$$

Reinterpretation of DI_{X}

DI revisited:

$$
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p}=\frac{\left(x^{p}+p \delta_{i}(x)\right)-\left(x^{p}+p \delta_{j}(x)\right)}{p}
$$

Reinterpretation of DI_{X}

DI revisited:

$$
\begin{aligned}
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p} & =\frac{\left(x^{p}+p \delta_{i}(x)\right)-\left(x^{p}+p \delta_{j}(x)\right)}{p} \\
& =\delta_{i}(x)-\delta_{j}(x)
\end{aligned}
$$

Reinterpretation of DI_{X}

DI revisited:

$$
\begin{aligned}
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p} & =\frac{\left(x^{p}+p \delta_{i}(x)\right)-\left(x^{p}+p \delta_{j}(x)\right)}{p} \\
& =\delta_{i}(x)-\delta_{j}(x)
\end{aligned}
$$

Prop

Reinterpretation of DI_{X}

DI revisited:

$$
\begin{aligned}
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p} & =\frac{\left(x^{p}+p \delta_{i}(x)\right)-\left(x^{p}+p \delta_{j}(x)\right)}{p} \\
& =\delta_{i}(x)-\delta_{j}(x)
\end{aligned}
$$

Prop

- Differences of p-derivations are derivations of the frobenius when reduced mod p.

Reinterpretation of DI_{X}

DI revisited:

$$
\begin{aligned}
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p} & =\frac{\left(x^{p}+p \delta_{i}(x)\right)-\left(x^{p}+p \delta_{j}(x)\right)}{p} \\
& =\delta_{i}(x)-\delta_{j}(x)
\end{aligned}
$$

Prop

- Differences of p-derivations are derivations of the frobenius when reduced mod p.
- They are $\widehat{\mathbb{Z}_{p}^{\text {ur }}}$ linear maps.

Reinterpretation of DI_{X}

DI revisited:

$$
\begin{aligned}
\frac{\sigma_{i}(x)-\sigma_{j}(x)}{p} & =\frac{\left(x^{p}+p \delta_{i}(x)\right)-\left(x^{p}+p \delta_{j}(x)\right)}{p} \\
& =\delta_{i}(x)-\delta_{j}(x)
\end{aligned}
$$

Prop

- Differences of p-derivations are derivations of the frobenius when reduced mod p.
- They are $\widehat{\mathbb{Z}_{p}^{\text {ur }}}$ linear maps.

As before: unreduced are they a cocycle in the sheaf defined by $U \mapsto \operatorname{Nat}\left(\left.\mathcal{O}\right|_{U},\left.\mathcal{O}\right|_{U}\right)$ "Sheaf Hom"?

Reynaud's Theorem

Reynaud's Theorem

Theorem
If C is a smoooth projective curve of genus $g \geq 2$ then C does not admit a lift of the frobenius for all primes p.

Reynaud's Theorem

Theorem
If C is a smoooth projective curve of genus $g \geq 2$ then C does not admit a lift of the frobenius for all primes p.
(Say defined over \mathbb{Z} then get C over $\widehat{\mathbb{Z}}{ }_{p}^{\text {ur }}$ by base extension).

Reynaud's Theorem

Theorem
If C is a smoooth projective curve of genus $g \geq 2$ then C does not admit a lift of the frobenius for all primes p.
(Say defined over \mathbb{Z} then get C over $\widehat{\mathbb{Z}}{ }_{p}^{\text {ur }}$ by base extension).
Easier Examples:

- Affine X. Always
- $g\left(\mathbb{P}^{1}\right)=0$. yes
- E. sometimes
- A. sometimes

Summary

Summary

X / R smooth scheme

Summary

X / R smooth scheme
R is p-torsion free

Summary

X / R smooth scheme
R is p-torsion free $R / p R$ perfect

Summary

X / R smooth scheme
R is p-torsion free
$R / p R$ perfect
$\sigma: R \rightarrow R$ lift of the frobenius.

Summary

X / R smooth scheme
R is p-torsion free
$R / p R$ perfect
$\sigma: R \rightarrow R$ lift of the frobenius.
QUESTION:
When does X admit a lift of the absolute frobenius frobenius agreeing with σ on R ?

Summary

X / R smooth scheme
R is p-torsion free
$R / p R$ perfect
$\sigma: R \rightarrow R$ lift of the frobenius.
QUESTION:
When does X admit a lift of the absolute frobenius frobenius agreeing with σ on R ?

Summary

X / R smooth scheme
R is p-torsion free
$R / p R$ perfect
$\sigma: R \rightarrow R$ lift of the frobenius.
QUESTION:
When does X admit a lift of the absolute frobenius frobenius agreeing with σ on R ?

PARTIAL ANSWER:

Necessary condition: $\mathrm{DI}_{X}=0$.

HOW IS DI_{X} A DEFORMATION CLASS?

A Similar Construction using Derivations

A Similar Construction using Derivations

FUNCTION FIELD SETTING

A Similar Construction using Derivations

FUNCTION FIELD SETTING

A Similar Construction using Derivations

FUNCTION FIELD SETTING

- Let X / R be a smooth scheme and where R. has a derivation δ.

A Similar Construction using Derivations

FUNCTION FIELD SETTING

- Let X / R be a smooth scheme and where R. has a derivation δ.
- Cover X by affine open subsets $X_{i} \cong \operatorname{Spec}\left(\mathcal{O}\left(X_{i}\right)\right)$.

A Similar Construction using Derivations

FUNCTION FIELD SETTING

- Let X / R be a smooth scheme and where R. has a derivation δ.
- Cover X by affine open subsets $X_{i} \cong \operatorname{Spec}\left(\mathcal{O}\left(X_{i}\right)\right)$.
- $X_{i} \subset X \longrightarrow{ }^{\pi} \operatorname{Spec}(R)$ still smooth.

A Similar Construction using Derivations

FUNCTION FIELD SETTING

- Let X / R be a smooth scheme and where R. has a derivation δ.
- Cover X by affine open subsets $X_{i} \cong \operatorname{Spec}\left(\mathcal{O}\left(X_{i}\right)\right)$.
- $X_{i} \subset X \longrightarrow{ }^{\pi} \operatorname{Spec}(R)$ still smooth.
- The derivation $\delta: R \rightarrow R$ lifts (nonuniquely) to a derivation $\delta_{i}: \mathcal{O}\left(X_{i}\right) \rightarrow \mathcal{O}\left(X_{i}\right)$

A Similar Construction using Derivations

FUNCTION FIELD SETTING

- Let X / R be a smooth scheme and where R. has a derivation δ.
- Cover X by affine open subsets $X_{i} \cong \operatorname{Spec}\left(\mathcal{O}\left(X_{i}\right)\right)$.
- $X_{i} \subset X \longrightarrow{ }^{\pi} \operatorname{Spec}(R)$ still smooth.
- The derivation $\delta: R \rightarrow R$ lifts (nonuniquely) to a derivation $\delta_{i}: \mathcal{O}\left(X_{i}\right) \rightarrow \mathcal{O}\left(X_{i}\right)$
The differences $\delta_{i}-\delta_{j}$ give an R-linear derivation. These give a cohomology class

$$
\left[\delta_{i}-\delta_{j}\right] \in H^{1}(X, T X)
$$

A Cocycle Construction Using Lifts of Derivations

A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$
\mathrm{KS}_{X / R}: \operatorname{Der}(R, R) \rightarrow H^{1}(X, T X)
$$

Theorem
The following are equivalent

A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$
\mathrm{KS}_{X / R}: \operatorname{Der}(R, R) \rightarrow H^{1}(X, T X)
$$

Theorem
The following are equivalent

A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$
\mathrm{KS}_{X / R}: \operatorname{Der}(R, R) \rightarrow H^{1}(X, T X)
$$

Theorem

The following are equivalent
(1) $\mathrm{KS}(\delta)=0$

A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$
\mathrm{KS}_{X / R}: \operatorname{Der}(R, R) \rightarrow H^{1}(X, T X)
$$

Theorem

The following are equivalent
(1) $\mathrm{KS}(\delta)=0$
(2) $J^{1}(X) \cong T X$

A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$
\mathrm{KS}_{X / R}: \operatorname{Der}(R, R) \rightarrow H^{1}(X, T X)
$$

Theorem
The following are equivalent
(1) $\mathrm{KS}(\delta)=0$
(2) $J^{1}(X) \cong T X$
(3) X descends to $R^{\delta}=\{r \in R: \delta(r)=0\}$ meaning

$$
X \cong X_{0} \otimes_{R^{\delta}} R
$$

where X_{0} is some schemes defined over R^{δ}.

A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$
\mathrm{KS}_{X / R}: \operatorname{Der}(R, R) \rightarrow H^{1}(X, T X)
$$

Theorem
The following are equivalent
(1) $\mathrm{KS}(\delta)=0$
(2) $J^{1}(X) \cong T X$
(3) X descends to $R^{\delta}=\{r \in R: \delta(r)=0\}$ meaning

$$
X \cong X_{0} \otimes_{R^{\delta}} R
$$

where X_{0} is some schemes defined over R^{δ}.
When X is a variety, $R=\mathbb{C}(x)$ defining equations have coefficients in \mathbb{C}.

Some Nonsense:

Some Nonsense:

Vague (and popular) Analogy is employed:

$$
\mathrm{KS}=0 \leftrightarrow \mathrm{DI}=0
$$

Interpretation: When trying to modify theorems in the function field setting, view a lift of the frobenius which keeps the topology fixed as "descent to \mathbb{F}_{1} ".

WHERE IS THE DEFORMATION THEORY?

WHERE IS THE DEFORMATION THEORY?

- $\mathrm{KS}^{\mathrm{ext}}$ denote the class before.

WHERE IS THE DEFORMATION THEORY?

- KS ${ }^{\text {ext }}$ denote the class before.
- We are now going to define $\mathrm{KS}^{\mathrm{ext}}$.

PREPARATIONS

Let \mathfrak{X} over S be a smooth and flat. We view it as a family of varieties

$$
\mathfrak{X}_{P}:=\mathfrak{X} \otimes_{S} \kappa_{S}(P)
$$

PREPARATIONS

Let \mathfrak{X} over S be a smooth and flat. We view it as a family of varieties

$$
\mathfrak{X}_{P}:=\mathfrak{X} \otimes_{S} \kappa_{S}(P)
$$

Important Examples

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$
(2) Fatten to some open affine neighborhood U of S which contains P.

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$
(2) Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
(3) Cover \mathfrak{X} by affine \mathfrak{X}_{i},

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$
(2) Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
(3) Cover \mathfrak{X} by affine \mathfrak{X}_{i}, get δ_{i}

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$
(2) Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
(3) Cover \mathfrak{X} by affine \mathfrak{X}_{i}, get δ_{i}
(3) $\theta_{i j}:=\left(\delta_{i}-\delta_{j}\right)$ are completely vertical

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$
(2) Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
(3) Cover \mathfrak{X} by affine \mathfrak{X}_{i}, get δ_{i}
(9) $\theta_{i j}:=\left(\delta_{i}-\delta_{j}\right)$ are completely vertical (they vanish under $\pi_{*}=d \pi$ and hence restrict to cocycles on the fiber)

External Kodaira Spencer Map

Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$
\mathrm{KS}^{\mathrm{ext}}: T_{P} S \rightarrow H^{1}\left(\mathfrak{X}_{P}, T \mathfrak{X}_{P}\right)
$$

(1) Let $\delta_{P} \in T_{P} S$
(2) Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
(3) Cover \mathfrak{X} by affine \mathfrak{X}_{i}, get δ_{i}
(9) $\theta_{i j}:=\left(\delta_{i}-\delta_{j}\right)$ are completely vertical (they vanish under $\pi_{*}=d \pi$ and hence restrict to cocycles on the fiber)

$$
\mathrm{KS}^{\mathrm{ext}}\left(\delta_{P}\right):=\left[\delta_{i}-\delta_{j}\right] \in H^{1}\left(\mathfrak{X}_{p}, T \mathfrak{X}_{p}\right)
$$

Link Between Internal and External

Link Between Internal and External

X be defined over a function field K

Link Between Internal and External

X be defined over a function field K
Deformation + Derivation on Base:

Link Between Internal and External

X be defined over a function field K
Deformation + Derivation on Base:

Let $\kappa_{S}($ generic pt of $S)=K$.

- Construct $\eta \in H^{1}(\mathfrak{X}, T \mathfrak{X})$ by lifting the δ on affine open sets as we have been doing previously.
- Construct $\eta \in H^{1}(\mathfrak{X}, T \mathfrak{X})$ by lifting the δ on affine open sets as we have been doing previously.
- Spectializing η at the generic points gives $\mathrm{KS}^{\mathrm{ext}}$

$$
\eta \otimes \kappa(\text { generic })=\mathrm{KS}^{\mathrm{ext}}
$$

- Construct $\eta \in H^{1}(\mathfrak{X}, T \mathfrak{X})$ by lifting the δ on affine open sets as we have been doing previously.
- Spectializing η at the generic points gives $\mathrm{KS}^{\mathrm{ext}}$

$$
\eta \otimes \kappa(\text { generic })=\mathrm{KS}^{\mathrm{ext}}
$$

- Specializing η at the closed points gives the external construction

$$
\eta \otimes \kappa(\text { closed point } P)=\mathrm{KS}^{\mathrm{ext}}
$$

Remark: There is a third way to get the map using the relative tangent sequence. Specializing that map gives different versions of this map.

More than Just an Analogy

Theorem (DI can detect deformation theoretic information)
If A is an abelian variety then

$$
F^{*} \mathrm{KS}^{e x t}=\mathrm{DI}
$$

PROBLEM: Find external constructions in the p-derivation setting. And relate them to known classes.

Infinitesimal Deformations

Infinitesimal Deformations

"The Kodaira Spencer map for any deformation factors through infinitesimal deformations."

Lemma

For all deformations families of X and choice tangent vector at a point who fiber is X, there exists an infinitesimal deformation that gives rise to the same cohomology class.

Infinitesimal Deformation

Define a functor

$$
\operatorname{Def}_{X}:\{\text { Local Artin Rings }\} \rightarrow \text { Sets }
$$

Infinitesimal Deformation

Define a functor

$$
\operatorname{Def}_{X}:\{\text { Local Artin Rings }\} \rightarrow \text { Sets }
$$

where

$$
\operatorname{Def}_{X}(A)=\frac{\{\mathfrak{X} \rightarrow \operatorname{Spec}(A), \mathfrak{X} \otimes}{\sim}
$$

Prop

$$
\operatorname{Def}_{X}(K[\epsilon]) \leftrightarrow H^{1}(X, T X)
$$

Factoring properties

Differentiation

Wittferentiation

These allow lifting of derivations and p-derivations for smooth maps.

Wittfinitesimal Deformations

We can construct a map similar to the one for wittfinitesimals in the case when $\operatorname{char}(k)=p$

$$
\operatorname{Def}\left(W_{p}(k)\right) \rightarrow H^{1}\left(X, F^{*} T X\right)
$$

PROBLEM:

Understand the wittfinitesimal deformations. Understand wittfinitesimal versions of the torelli map.

The Big Class

Big Class

$$
B_{X} \in H^{1}\left(X^{\hat{p}}, \underline{\operatorname{Aut}}\left(\mathbb{A}^{1}\right)^{\hat{p}}\right)
$$

(that is terrible to $T_{E} X$)
Let X be a smooth scheme over

$$
W_{p^{\infty}}\left(\overline{\mathbb{F}}_{p}\right)=\underbrace{\widehat{\mathbb{Z}_{p}^{u r}}}
$$

has unique lift of frob

The Big Class

Big Class

$$
B_{X} \in H^{1}\left(X^{\hat{p}}, \underline{\operatorname{Aut}}\left(\mathbb{A}^{1}\right)^{\hat{p}}\right)
$$

(that is terrible to $T_{E} X$)
Let X be a smooth scheme over

$$
W_{p^{\infty}}\left(\overline{\mathbb{F}}_{p}\right)=\underbrace{\widehat{\mathbb{Z}_{p}^{u r}}}
$$

has unique lift of frob

The Big Class

Big Class

$$
B_{X} \in H^{1}\left(X^{\hat{p}}, \underline{\operatorname{Aut}}\left(\mathbb{A}^{1}\right)^{\hat{p}}\right)
$$

(that is terrible to $T_{E X}$)
Let X be a smooth scheme over $W_{p^{\infty}}\left(\overline{\mathbb{F}}_{p}\right)=\underbrace{\widehat{\mathbb{Z}_{p}^{u r}}}$
has unique lift of frob
Define cohomology class in the sheaf $\left.\underline{\operatorname{Aut}}\left(\mathbb{A}^{1}\right)^{\hat{p}}\right)$ via the local trivializations of the jet space.

The Big Class
[Jet Rings and Globalizing]

The Big Nasty Class

What the sheaf looks like (hat's omitted):

The Big Class

The cocycle is induced by transition maps between trivializations Let $X_{i} \subset X$ be trivializing sets
If X is smooth over $\widehat{\mathbb{Z}_{p}^{\text {ur }}}$ of relative dimension d then

$$
J^{n}\left(X_{i}\right) \rightarrow^{\sim} X_{i} \times \mathbb{A}^{d n}
$$

The Big Class

The cocycle is induced by transition maps between trivializations Let $X_{i} \subset X$ be trivializing sets
If X is smooth over $\widehat{\mathbb{Z}_{p}^{\text {ur }}}$ of relative dimension d then

$$
J^{n}\left(X_{i}\right) \rightarrow^{\sim} X_{i} \times \mathbb{A}^{d n}
$$

*Characteristic Zero

The Big Class

What does the B actually look like?

The Big Class

What does the B actually look like?
Let $X=C$ a curve and $n=1$.

$$
\mathcal{O}\left(\hat{C}_{i} \hat{\chi} \hat{A}^{1}\right)=\mathcal{O}\left(C_{i}\right)[\dot{x}]^{\hat{p}}
$$

consisting of restricted powerseries $\sum_{j=0}^{\infty} f_{j} \dot{x}^{j}$ satisfing $\left|f_{j}\right|_{p} \rightarrow 0$ as $p \rightarrow \infty$.
***Transition maps happen by plugging in restricted power series.

The Big Class

Lemma
Let R be a ring of characteristic p. Then

$$
\operatorname{Aut}_{R}(\mathbb{R}[x]) \cong \operatorname{AL}_{1}(R)
$$

The automorphisms look like

$$
f(x) \mapsto f(a x+b)
$$

where $a \in R^{\times}$and $b \in R$.

The Big Class Controls DI

When we reduce the cocycle in $\underline{\operatorname{Aut}}\left(\hat{A}^{1}\right) \otimes_{\widehat{\mathbb{Z}}} \overline{\mathbb{F}}_{p} \cong \underline{\mathrm{AL}_{1}}$.

$$
\begin{gathered}
\mathrm{AL}_{1}=\mathbb{G}_{m} \ltimes \mathbb{G}_{a} \\
\beta_{i j}=\underbrace{c_{i j}}_{\text {gives }\left[F^{*} T X\right] \in H^{1}\left(C, \mathcal{O}^{\times}\right)} \dot{x}+\underbrace{d_{i j}}_{\text {givesDI }}
\end{gathered}
$$

PROBLEM

We want to show $B(X)$ is nontrivial.

