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Abstract. We prove that the sheaf of local formal lifts of the Frobenius on

p-adic algebraic curves of sufficiently large genus has the structure of a torsor

under some line bundle. We show that this torsor structure is not unique and
describe all such line bundles and torsor structures explicitly. This lifts a well-

known torsor structure exploited in the works of (say) Buium, Deligne-Illusie,

Mochizuki and Ogus-Vologodsky.
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1. Introduction

In this paper p will always denote a prime. We will let CRing denote the category
of commutative rings with a unit, CRingB denote the category of commutative rings
over a base ring B, SchS or SchB be the category of schemes over a scheme S or a
ring B and Set denote the category of sets.

For a ring B over a ring of p-adic integers we will use the notation Bn = B/pn+1.

We will use B̂ or Bp̂ to denote p-adic completion lim←−B/p
n+1. For a scheme Y

over such a ring B we will use the notation Yn for the reduction modulo pn+1 i.e.

Y := Y ⊗B Bn. We will let Ŷ = lim−→Yn denote the p-formal completion of a scheme
Y over a p-adic ring B.

By a curve in SchB we will mean a scheme of relative dimension 1.

1.1. Motivation for Theorem 1.6. Theorem 1.6, which is our main theorem, is
about lifting known “arithmetic Kodaira-Spencer” constructions in characteristic p
to characteristic zero. Subsections 1.1.1–1.1.5 provide motivation and background
for Theorem 1.6. The expert reader may wish to skip directly to section 1.2.

1.1.1. Kodaira-Spencer classes. Let K be a characteristic zero field with a deriva-
tion D : K → K. Let X/K be a smooth scheme. Let (Ui → X)i∈I be a Zariski
affine open cover of X such that Di : O(Ui) → O(Ui) are lifts of the derivation D
on K. We can then form the cohomology class

KS(X) := [Di −Dj ] ∈ H1(X,TX/K)

where TX/K denotes the relative tangent sheaf, whose sections are K-linear deriva-

tions on O. The class KS(X) ∈ H1(X,TX/K) is called the Kodaira-Spencer
class.

For a X/K a variety over a field with a derivation, one can define a twisted
version of the tangent bundle J1(X/K,D)→ X whose local sections correspond to
derivations lifting the derivation D on the base. The space J1(X/K,D) is called
the first jet space of X/K.

Theorem 1.1 ([Bui94], Proposition 2.5, page 65). Let X/K be a smooth variety
over a field with a derivation D. Suppose in addition that K is algebraically closed.
The following are equivalent

(1) KS(X) = 0 in H1(X,TX/K)

(2) J1(X/K,D) ∼= TX/K as TX/K-torsors.
(3) There exists some X ′ ∈ SchKD such that

X ∼= X ′ ⊗KD K.

Here KD denotes the field of constants

KD = {c ∈ K : D(c) = 0}.
The aim of this paper is to show that an arithmetic analog of this theorem exists

in the case of curves over the p-adic ring R = Ẑurp the p-adic completion of the
maximal unramified extension of the p-adic integers.

In the arithmetic variant of Theorem 1.1 the first jet space J1(X/K,D) is re-
placed by the first arithmetic jet space of Buium. Local sections of the first arith-
metic jet space of a scheme correspond to local lifts of the Frobenius.
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1.1.2. Witt vectors. We refer to Hazewinkel [Haz09] and for an introduction to Witt
vectors. We recall that the full (p-typical) witt vectors Wp,∞ are a functor from
rings to rings. A basic property is that Wp,∞(Fp) = Zp, the p-adic integers. For
k ⊂ F̄p, the ring Wp,∞(k) is a complete discrete valuation rings with residue field
k; it is a p-adic completion of an unramified extension of the p-adic integers. The

ring Wp,∞(F̄p) is isomorphic to Ẑurp = Zp[ζ; ζn = 1, p - n]̂, the p-adic completion of
the maximal unramified extension of the p-adic integers. All of these rings have a
unique lift of the Frobenius φ which is constant on Zp and acts on roots of unity
by ζ 7→ ζp.

We also recall that the truncated (p-typical) Witt vectors of length two Wp,1 are
a functor from rings to rings where for a ring A we have Wp,1(A) = A× A as sets
with addition and multiplication rules given by

(x0, x1)(y0, y1) = (x0y0, x
p
0y1 + yp0x1 + px1y1),

(x0, x1) + (y0, y1) = (x0 + y0, x1 + y1 + Cp(x0, y0)),

where

Cp(S, T ) =
Sp + T p − (S + T )p

p
∈ Z[S, T ].

This functor has the property that Wp,1(Fp) ∼= Z/p2. The ideal Vp(Wp,1(A)) =
{(0, a) : a ∈ A} has square zero for every ring A.

1.1.3. p-derivations and lifts of the Frobenius. Let A be a ring and B be an A-
algebra. Let p be a prime number. A p-derivation from A to B is a map of sets
δ : A→ B such that for all a, b ∈ A we have

δ(a+ b) = δ(a) + δ(b) + Cp(a, b),

δ(ab) = δ(a)bp + apδ(b) + pδ(a)δ(b),

δ(1) = 0,

where Cp(S, T ) is as above. These operations were introduced independently by
Joyal [Joy85] and Buium [Bui96]. The collection of p-derivations from a ring A to
a ring B will be denoted by p-Der(A→ B).

Example 1.2. (1) If A = B = Zp, the p-adic integers, then the map δp(x) =
x−xp
p defines a p-derivation.

(2) If A = Z/p2 and B = Z/p then the division-by-p map [1/p] : pZ/p2 → Z/p
makes sense and the map δp : Z/p2 → Z/p defined by x 7→ [1/p](x − xp)
gives a p-derivation.

For a ring A we will let Wp,1(A) denote the ring of p-typical Witt vectors of
length two.

A p-derivation δ : A → B is equivalent to a map A → Wp,1(B) such that its
composition with the canonical projection map Wp,1(B) → B is the underlying
algebra map A → B. This is similar to the fact that morphisms A → B[t]/(t2)
such that the composition with the projection B[t]/(t2)→ B give the algebra map
A→ B are equivalent to derivations from A to B.

A lift of the Frobenius from A→ B is a morphism φ : A→ B such that

φ(x) ≡ xp mod p.
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If B is a p-torsion free ring then a lift of a Frobenius is equivalent to a p-derivation

and they are related by the formula δp(x) = φ(x)−xp
p .

An expression involving polynomial combinations of ring elements together with
p-derivations will be called a wittferential equation or arithmetic differential equa-
tion. A basic reference for this material is [Bui05].

1.1.4. Deligne-Illusie classes modulo p. We will fix the following notation:

• R0 = k is a perfect field of characteristic p.
• R = Wp,∞(k) the ring of p-typical Witt vectors (equivalently, the p-adic

completion of the maximal unramified extension of the p-adic integers).
• X/R a smooth scheme of finite type.
• FTX0 the OX0-module of Frobenius derivations. For D ∈ FTX0 a local

section and x, y ∈ OX0 local sections we have

D(xy) = D(x)yp + xpD(y),

D(x+ y) = D(x) +D(y).

Such derivations are called Frobenius derivations.

Let δ : R1 → R0 be the unique p-derivation from R1 to R0. If X/R is smooth,
we can cover X by affine open subsets (Ui → X1)i∈I and find local lifts of the
p-derivations

δi : O(Ui)1 → O(Ui)0.

The difference δi − δj gives a well-defined map

(δi − δj) : O(Uij)0 → O(Uij)0,

which is a derivation of the Frobenius, (δi − δj) ∈ FTX0
((Uij)0). The differences

define a Čech cocycle for FTX0 and one can check that the associated cohomology
class is independent of the choice of lifts δi. Hence we have a well defined map

DI0 : p-Der(R1 → R0)→ H1(X0, FTX0).

Since the p-derivation R1 → R0 is unique it will not hurt to denote the class
associated to the lift X1 by DI0(X1).

Implicit in this construction is the fact that the sheaf p-Der(OX1 → OX0) is
a torsor under FTX0 . We will say more about this in section 2. The sheaf of
p-derivations is representable, it is called the first p-jet space of a curve modulo
p, and it will be denoted by J1

p (X)0. This torsor appears in many places in the
literature under different names. Sometimes it is refered to as “the torsor of lifts
of the Frobenius” and is denoted by L in [OV07]. The first p-jet space modulo p,
J1
p (X)0 is sometime known as the Greenberg transform Gr1(X); this is the notation

for example in [LS03].

Remark 1.3. (1) The construction of the Deligne-Illusie class is implicit in the
proof of [DI87, Theorem 2.1 ] where the class DI0(X) is denoted by c = [hij ].
The class can also be seen in [DI87, Remark 2.2.iii] and [DI87, Theorem 3.5].
In [DI87, section 3], using a certain stack of splittings of a certain sheaf,
they proof that Deligne-Illusie classes classify lifts of varieties modulo p2.

(2) In [Moc96, Chapter II, section 1, Theorem 1.1] also employs the Deligne-

Illusie construction. Implicit in the proof that D (the lifts of X
(p)
0 , a Frobe-

nius twist of X, to Z/p2) is a torsor under the first sheaf cohomology of the
Frobenius tangent sheaf. We should note that in his treatment, Mochizuki
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considers schemes with log structures while we do not. Mochizuki attributes
the results in this section to [Kat89, proposition 4.12] who attributes to
[DI87].

(3) The Deligne-Illusie class DI0(X1) ∈ H1(X0, FTX0
) should be compared to

the classical deformation class KS(X1) ∈ H1(X0, I1 ⊗ TX0
) where I1 is the

ideal sheaf of X0 ↪→ X1. This construction of KS(X1), in the equicharac-
teristic setting, can be found in [Ols07].

1.1.5. Buium’s arithmetic jet spaces. Let R = Wp,∞(k) where k is a perfect field
of characteristic p. Let X/R be a scheme. We define the rth p-jet space functor
by

Jrp (X) : SchR → Set

Jrp (X)(A) = X(Wp,r(A)) for all A ∈ CRingR.

The association Jrp : SchR → Fun(SchR,Set) is functorial. Here Fun denotes the
category of functors where morphisms are natural transformations.

Proposition 1.4 (Borger [Bor11], (12.5)). For every X/R a scheme of finite type,
the functor Jrp (X) is representable in the category of schemes.

Remark 1.5. (1) The functors we denote as Jrp have been denoted as Wr∗ by
Borger in [Bor11].

(2) In [Bui96] Buium proved that the functors X 7→ Jrp (X)n are representable
for every n ≥ 0. Buium simply denotes these functors as Jr(−).

It is important to know that local sections of the map J1
p (X)n → Xn correspond

to local lifts of the Frobenius.

1.2. The statement of Theorem 1.6. The following theorem lifts the situation
in section 1.1.4.

Theorem 1.6 (Lifted Torsors of Lifts of the Frobenius). Let R = Wp,∞(F̄p).
Let X/R be the p-formal completion of a smooth projective curve of genus g > 2
defined over Spf R. Suppose in addition that the prime p > 3g − 3. There exists a
line bundle FTX → X such that J1

p (X) has the structure of a torsor under FTX .
Also, this FTX and this torsor structure are non-unique.

Theorem 1.6 is proved in section 4.3. Remarks on the proof can be found at the
end of the introduction in section 1.4. We will now give an obstruction/deformation
theoretic formulation of Theorem 1.6 which indicate what sort of geometry goes into
the proof.

For X ⊂ Pn
R a curve we will denote by condition (∗) the following

(1.1) g(X) ≥ 2 and p > deg(X ⊂ Pn
R).

Theorem 1.7 (Obstruction/Deformation Theoretic Formulation of Theorem 1.6).
Let X ⊂ PN

R be a smooth projective curve.

(1) We have the following inductive procedure for finding torsor structures:
• Suppose J1

p (X)n−1 admits a torsor structure under some FTXn−1 .
There exists a sheaf of abelian groups Bn and cohomology classes obs(Xn+1) ∈
H1(Xn,Bn) which is an obstruction to J1

p (X)n admitting the structure
of a torsor under a line bundle FTXn (which is not unique).
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• In the case n = 0 this structure is the well-known torsor of lifts of the
Frobenius modulo p2 where FTXn is the sheaf of Frobenius derivations
and B0 = F ∗X0

Ω1
X0

.
(2) If the obstruction vanishes the isomorphism classes of pairs (FTXn , ρn) of

line bundles FTXn together with torsor actions

ρn : J1
p (X)n × FTXn → J1

p (X)n

are themselves a torsor under H0(Xn,Bn).
(3) In the case of curves satisfying (∗) the obstruction vanishes at each stage.

In the case that the obstruction vanishes for some n ≥ 0, after fixing a line
bundle and torsor structure (FTXn , ρn) we define a Deligne-Illusie class

DIn(ρn) ∈ H1(Xn, FTXn)

to be the cohomology class associated to the torsor structure. When n = 0 we have
DI0(ρ0) = DI0(X) where DI0(X) is defined as in section 1.1.4.

Remark 1.8. The classes DI0(X) are known to exist for smooth X/R of arbitrary
dimension. The lifted classes are known to exists for abelian varieties. Buium refers
to these classes in [Bui95] and [Bui05] as Arithmetic Kodaira-Spencer classes and
denotes them with KS instead of DI. See [Bui05, Definition 3.10] for Deligne-Illusie
classes for varieties in characteristic p and [Bui05, Definition 8.50] for a variant for
abelian varieties (which can also be constructed in characteristic zero).

In [Bui95, Lemma 4.4], Buium relates DI0(A) of an abelian variety (denoted ρint

there) to KS(A1/R1) (denoted ρext and viewed as a map). He proves that

DI0(A/R) = F ∗KS([δ(t(A)) mod p]1/p),

where F denotes the absolute Frobenius, t : R[[tij : 1 ≤ i, j ≤ dimR(A)]] → R is
the Serre-Tate classifying map for A with image t(A) and the bar denote reduction
modulo p. We refer to [Bui95] for more details.

After pairing a Deligne-Illusie class with elements of the Serre dual of the recipi-
ent space one can obtain arithmetic differential equations (wittferential equations)
in the coefficients of the variety which are zero precisely when the variety admits a
lifts of the Frobenius. In the case that the variety under consideration is an elliptic
curve, there is only one differential equation and it is a differential modular form (in
the sense of Buium) which cuts out canonical lifts on modular curves. See [BP09,
Section 3.9] for an appearence in an application and [Bui00] for more on differential
modular forms.

The following remark explains the connections of these classes to absolute ge-
ometry.

Remark 1.9. (1) The category of Λp-Schemes Sch
Λp
R (resp Sch

Λp
Rn

) is the cat-
egory where objects are schemes X/R (resp Xn/Rn) with a lifts of the
Frobenius on R (resp Rn) and morphisms are morphisms of schemes over
R (resp Rn) equivariant with respect to the Frobeniuses.

For X ′ ∈ Sch
Λp
R (resp Sch

Λp
Rn

) we will let −⊗Λp R : Sch
Λp
R → SchR denote

the forgetful functor (resp −⊗Λp Rn).
The significance of this category for us is the following: in view of being

able to define torsor structures on higher order reductions of p-jet spaces
one has the following equivalence of statements:
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(a) DIn(Xn) = 0 in H1(Xn, FTXn)
(b) J1

p (X)n ∼= FTXn as a torsors under FTXn .
(c) Xn/Rn descends to the category of Λp-schemes: There exists some

X ′n ∈ Sch
Λp
Rn

such that X ′n ⊗Λp Rn = Xn. 1

This equivalence can be viewed as an arithmetic analog of Theorem 1.1
which is what motivates much of the theory.

(2) When R = Wp,∞(Fp) we have

Rδp = {c ∈ R : δp(c) = 0} = {ζ : ζn = 1, p - n} ∪ {0}
which is a monoid of roots of unity. It is unclear if there exists an interpreta-
tion of descent in the algebro-geometric categories from say [Lor12],[TV09]
or others mentioned in [PL09]. Such a construction could be interesting.

(3) A result of Raynaud [Ray83] shows that curves X/R of genus g ≥ 2 do not
have lifts of the Frobenius. Hence curves X/R satisfying (∗) do not have
lifts of the Frobenius and act as “nonisotrivial” in our setting.

1.3. The geometry of Theorem 1.6. The remainder of the paper is devoted to
clearing up questions that arise out of proving Theorem 1.6. In particular one may
ask:

(1) On what choices do the AL1-structures in Theorem 1.6 depend?
(2) On what choices do the line bundles FTXn depend? Are they unique up to

isomorphism?
(3) To what extent are H1(Xn, FTXn) and the class inside it well-defined?
(4) Are the Deligne-Illusie classes parametrized by an easily describable canon-

ical object?

The first, second and third questions are essentially the same and can be an-
swered by developing the theory principal bundles in the category of fppf sheaves.
After answering these questions we turn to the theory of algebraic stacks to answer
Question 4.

These first questions can be answered by proving an “arithmetic Steenrod The-
orem” together with the “yoga of fiber bundles”. Here is the statement of the
Theorem:

Theorem 1.10 (Arithmetic Steenrod Theorem). Let P be a principal G-bundle.
Let Aut(P ) denote the G-bundle automorphisms of P . Let G′ ⊂ G be a closed
subgroup scheme. Let P → P/G′ be the associated fibration.

(1) All the sections of G′\P ′ → X give rise to G′-reductions of P .
(2) We have the following correspondence

{ G′-reductions of P }/(isom)↔ Γ(X,P\G′)/Aut(P ).

Remark 1.11. Steenrod stated his theorem for topological spaces and we present
the proof here for sheaves since we could nice find a suitable reference. We first
learned about this approach from [Hir78, chapter 3] where it is partially treated for
right actions in the category of algebraic varieties over C. We found more details
in [Bal09] and [Sor00] although these reference disagreed in some places (compare
[Sor00, Lemma 2.2.3] and [Bal09, Remark 2.12, page 4] with Theorem 1.10). Be-
cause we can’t find a complete reference for this theorem we give a full proof.

1 This is just a fancy notation for saying that Xn admits a lift of the Frobenius.
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Question 4 is answered by the following theoremTheorem 1.10:

Theorem 1.12 (Moduli of Torsor Structures). Let X/R be a curve of genus g ≥ 2.
Suppose that p > 3g − 3 and fix Σn an An-structure. The torsor/line bundle
structures on J1

p (X)n are parametrized by an algebraic stack MXn(Σn,AL1,Rn)
defined in Definition 6.8.

This is proved in section 5.4 of the text. We found the notes [Sor00] particularly
useful in this context and have adapted its notation for our purposes.

1.4. Proof strategies. We now make some remarks on the proofs of Theorems 1.6
and Theorem 1.12.

Remark 1.13 (Strategy of Theorem 1.6). To prove that J1
p (X)n has the structure

of a torsor under some lift of FTX0
, it suffices to show that J1

p (X)n admits an
AL1-structure. Here are the reduction steps:

Step 1: Show that J1
p (X)n admits the structure of an A1

Rn
-bundle.

Step 2: Show that J1
p (X)n admits an An-structure. (We will introduce sub-

groups An, An,d ≤ Aut(A1
Rn

) of “automorphisms of bounded degree” which

play a key role in the proof.).2

Step 3: Show by induction on n that J1
p (X)n admits an An,n-structure.

Step 4: Show by induction on d that if J1
p (X)n admits an An,d-structure then

it admits a An+1,d−1 structure for d ≥ 2. (An,1 ≤ AL1(OXn)) 3

The first step is a theorem of Buium (section 4.1). The second step is where most
of the work happens: we perform some local computations for transition maps for
plane curves and extend these results to imply the existence of An-structures for n ≥
1. This is done in section 4.2. The third and fourth steps are done simultaneously
in section 4.3 and uses a “pairing” between group and Čech cohomology.

Remark 1.14 (Strategy of Theorem 1.10). In this theorem we prove a variant of
“Steenrod’s Theorem” for fppf sheaves. This uses existence of limits in the category
of fppf sheaves and technical computations. The main difficulty here was finding
the correct setting in which to do this.

Remark 1.15 (Strategy of Theorem 1.12). In an abstraction of our setup for 1.6
(with the requisite groups and group cocycles), we study the sections from Steen-
rod’s theorem from a scheme-theoretic perspective. It turns out that the quotient
in Steenrod’s theorem is a quotient of scheme by a group scheme action and hence
can be represented by an algebraic stack.
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2 This step uses the hypothesis deg(X) << p.
3 This step uses the hypothesis g(X) ≥ 2.
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2. Wittferential algebra

In this section we gather material from [Bui95], [Bui96] and [Bui05] in a form
that will be conventient for reference later. The expert reader may wish to skip
this section.

2.1. p-derivations. Let A and B be rings, with B an A-algebra. A p-derivation
δp : A→ B is a map of sets satisfying the following axioms

δp(a+ b) = δp(a) + δp(b) + Cp(a, b)

δp(ab) = δp(a)bp + apδp(b) + pδp(a)δp(b)

δp(1) = 0

Cp(x, y) =
xp + yp − (x+ y)p

p
∈ Z[x, y]

The category of rings with p-derivations is called the category of Λp-rings.
Let A be a ring and a ∈ A. Recall that we have a well-defined morphism[

1
a

]
: aA→ A/ann(a), where ann(a) denotes the annihilator ideal of a. This is used

in what follows.

Example 2.1. δ : Z/p2 → Z/p given by δ(x) = (x− xp)/p where we interpret 1/p
as a map 1

p : pZ/p2 → Z/p.

Example 2.2. If R = Wp,∞(k) with k perfect of characterisic p then R has a unique
lift of the Frobenius φ on it. It hence has a unique p-derivation δ(x) = (φ(x)−xp)/p.

Lemma 2.3. Let R = Wp,∞(k) where k is a perfect field of characteristic p.

(1) δp(p
n) = pn−pnp

p = pn−1 · unit

(2) δp(p
n · unit) = pn−1 · unit

(3) (pn, δp(p
n), δ2

p(pn), . . . , δr(pn))R = (pn−r)R

Proof reference. The proofs are omitted. We refer to reader to [Bui96, section 1.3]
for further discussion. �

2.2. First p-jet ring. Define (−)p,1 : CRing→ CRing by

Ap,1 = A[ȧ : a ∈ A]/(relations),

where (relations) are generated by

˙(ab+ c) = ȧbp + apḃ+ pȧḃ+ ċ+ Cp(ab, c),(2.1)

Cp(x, y) =
xp + yp − (x+ y)p

p
∈ Z[x, y],(2.2)

For all a, b, c ∈ A.

Remark 2.4. Let R = Wp,∞(k) where k ⊂ F̄p. If A is an R-algebra and R admits
multiple p-derivations we may want to impose that the p-derivation on A extend
the one on the base. Suppose δ0 : R → R is such a p-derivation on the base. The
additional relation we impose is then ṙ = δ0(r) where of course these are understood
to be taken as an image in A. Since we will work modulo pth powers or p-formal
setting in this paper, this will not matter.
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Example 2.5. A/R is finite type,

A = R[x1, . . . , xn]/(f1, . . . , fr) = R[x]/(f)

where x = (x1, . . . , xn) , f = (f1, . . . , fr) then

Ap,1 = R[x, ẋ]/(f, ḟ)

where ẋ = (ẋ1, . . . , ẋn) and ḟ = (ḟ1, . . . , ḟr). Here ˙(f1), . . . , ˙(fr) ∈ R[x, ẋ] are
computed using (2.1).

Theorem 2.6 (Universal Property). There is a universal p-derivation δp,1 : A →
Ap,1 mapping a to ȧ. It satisfies the following universal property:

For every p-derivation δ : A→ B of the ring homomorphism A→ B there exists
a unique ring homomorphism uδ : Ap,1 → B such that

A
δ //

δp,1 !!

B

Ap,1

uδ

OO .

The ring homomorphism is the morphism of A-algebras defined by uδ(ȧ) = δ(a). 4

Proof reference. [Bui96, section 1.4]. �

2.3. Data of p-derivations.

Lemma 2.7. Let B ∈ CRingA, A ∈ CRingR where R = Wp,∞(k) and k is a perfect
field of characteristic p. Suppose that A and B are flat over R. The following data
are equivalent.

(1) A p-derivation δ : A→ B of the algebra map A→ B.
(2) An action ρ : A→Wp,1(B) (meaning a morphism of rings such that (π1)B◦

g) = f : A→ B the algebra map.
(3) A morphism of A-algebras Ap,1 → B.

Proof. The equivalence between morphisms from the Jet ring and p-derivations
can be found essentially in [Bui96, Lemma 1.6]. Since being flat is equivalent to
multiplication by p being injective, one uses the relation δ(x) = (φ(x) − xp)/p to
show that lifts of the Frobenius and p-derivations are equivalent. �

The following example describes the target of p-derivations and factorization of
ring homomorphisms when A and B are not flat over R.

Example 2.8. Let A and B be rings over R = Wp,∞(k) with k perfect of charac-
teristic p. Suppose p 6= 2 and consider the diagram

Ap,1
u // B

A

OO

4 Warning: The diagram is not a diagram in the categorical sense but it is an exercise to show
that the universal property can be formulated in terms of diagrams
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This induces A → B. Suppose we are given an algebra structure f : A → B.
Suppose A = A/pn+1. Then (A)p,1 = (A)p,1/p

n. This follows from the fact that

δ(pn) =
pn − pnp

p
= pn−1(1− pn(p−1)),

when p is not a unit. Hence we have a factorization

Ap,1
u // B

A

OO

π∗1 // A/pn

OO ,

although f : A→ B may not factor through a reduction modulo pn in general.

Theorem 2.9. Let A be a p-torsion free ring and φ a lift of the Frobenius on A
inducing a lift of the Frobenius on An = A/pn+1. This then induces a well-defined
p-derivation

δp : An → An−1.

Proof. In general, given any A and a lift of the Frobenius φ : A → A, one can try
to define

δp : A→ A/ann(p)

via

δp(a) = (

[
1

p

]
◦ g)(a)

where g(a) = φ(a)− ap, and g : A→ pA at least.
The difficulty in defining δp comes from the equality[

1

p

]
(g(a)g(b)) = p ·

[
1

p

]
(g(a)) ·

[
1

p

]
(g(b)) in A/ann(p).

We leave it to the reader to verify that this makes sense. In doing so, it is useful
to now that when An = B/pn+1 where B is p-torsion free then

annA(pj) ∼= pn−jA,

A/annA(pj) ∼= A/pn−j ,

and hence we have maps [1/p] : pAn → An−1. �

Theorem 2.10. Let A,B be flat over R = Wp,∞(k) where k ⊂ F̄p. Suppose that
A is of finite type over R. Let f : A → B be a morphism of rings inducing the
morphism of rings fn : An → Bn. The following are equivalent

(1) A lift of the Frobenius φn : An → Bn,

φn(a) ≡ f0(a)p mod p

(2) A p-derivation δp : An → Bn−1

(3) A morphism (Ap,1)n−1 → Bn−1 of An−1-algebras.

Proof. To see that 2 implies 1 note that φn(a) := ap + pδ(a) defines a lift of the
Frobenius. We will show that 3 and 2 are equivalent: Let A = R[x]/(f) so that

(Ap,1)n = (R[x, ẋ]/(f, ḟ))/pn = Rn−1[x, ẋ]/(f, ḟ). The map clearly defines a p-
derivation. (Note: (δp,1)n : An → (Ap,1)n−1 is universal).

We will not show 1 implies 2 but the reader can verify that this follows from the
universal property of p-derivations. �
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Lemma 2.11. Let A, B and C be flat R = Wp,∞(k)-algebras where k ⊂ F̄p.
Suppose A → B is an étale morphism of rings. Every p-derivations Bn → Cn−1

lifts to a unique p-derivation An → Cn−1.

Proof. The proof is essentially the same as the standard proof for lifting infinitesi-
mal deformations and these ideas go back to Seidenberg. We prove a stronger result
from which our result follows a fortiori.

Recall that étale ring homomorphisms have the infinitesimal lifting property:
For every commutative diagram

(2.3) A //

α

����

B

β

��

C // C/I

, I2 = 0,

there exists a unique map β̃ : B → C making the diagram commute. We want to
show that when we are given a p-derivation

A

�� $$
Wp,1(C ′) // C ′

,

there exists a diagram

B

�� $$
Wp,1(C ′) // C ′

lifting the previous. We apply the infinitesimal lifting criterion ( equation (2.3))
with the following choices:

C = Wp,1(C ′),

C/I = C ′,

I = Vp(Wp,1(C ′)),

α = map assoc. to p-der B → C ′,

β = alg map A→ C .

Here Vp(Wp,1) denotes the kernel of the map Wp,1 → id. �

3. p-Jets

References for this section include [Bui05], [Bui96] and [Bui95]. We present the
material here for convenience. We summarize the results of this section:

(1) The functors X ◦Wp,r are represented by schemes Jrp (X) called p-jet spaces
when X is defined over Rn.

(2) Suppose X/R = Wp,∞(F̄p) is flat. Then local sections of the map (π1)n :
J1
p (X)n → Xn induce local p-derivations (equivalently local lifts of the

Frobenius) on Xn and conversely.
(3) If X/R is flat then Jrp (Xn) = Jrp (X)n−r, in particular J1

p (Xn) = J1
p (X)n−1.
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3.1. p-jet spaces. Let X/R be a scheme where R = Wp,∞(k), with k perfect of
characteristic p. define the rth p-jet functor Jrp (X) : CRingR → Set to be the
functor of Wp,r valued points of X:

Jrp (X)(A) := X(Wp,r(A)), A ∈ CRingR.

The natural morphism of ring schemes πr,s : Wp,r → Wp,s for r > s induces
functorial morphisms Jrp (X) → Jsp(X). Let O denote the identity ring scheme.
The morphisms πr : Wp,r → O induce functorial morphisms Jrp (X)→ X.

Example 3.1. When X = Spec(A) and A is an R algebra with R = Wp,∞(k)
where k is perfect of characteristic p we have that J1

p (X) is representable and

J1
p (Spec(A)) = Spec(Ap,1)

as schemes over X.

Remark 3.2. Since the constuction A 7→ Ap,1 does not localize well one needs to
work hard to get that p-jet spaces are representable. Bad localization behavior can
be observed in the p-derivation rule for fractions

δ

(
1

f

)
=

fpδ(f)

fp(fp + pδ(f))
.

For X/R = Wp,∞(k) flat where k ⊂ F̄p, we define the sheaf of OXn -algebras

O(1)
Xn

to be the sheaf associated to presheaf

U 7→ O(U)p,1 mod pn+1,

for relevant open subsets of U . We will construct the global spectrum of this ring
in order to produce the first p-jet spaces.

Theorem 3.3 ([Bui96] section 1.4). Let R = Wp,∞(k) where k is perfect of char-
acteristic p.

(1) Let X/R be a flat scheme. The functor Jrp (X)n := Xn+r+1 ◦Wp,r over Xn,
is representable.

(2) Furthermore for every A in CRingRn we have

Jrp (X)n(A) = Jrp (X)(A) = X(Wp,r(A))→ X(A) = Xn(A)

where the map is πr.

Remark 3.4. Borger in [Bor11]] proves the following more difficult theorem: let X/Z
be any scheme. The functor Jrp (X) := X ◦Wp,r is representable in the category of
schemes over Z.

Theorem 3.5. Let X/R be a scheme which is flat over R. Let n,m, r, s be natural
numbers.

(1) The natural morphism πm,s : Jmp (Xn)→ Jsp(Xn) factors through reduction

modulo pn−m+1,

Jmp (X)n−m
(πr+s,s)n−r−s

// Jsp(X)n−m .

This is a morphism of schemes over Rn−m.
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(2) The sheaf of local sections

J1
p (X)m

π1 // Xn

s
vv

represents the sheaf of p-derivations (equivalently local lifts of the Frobenius)

δ : O(Xn+1)→ O(Xn) = O(Xn+1)/pn+1.

Proof. The problem is local. Let X = Spec(R[x]/(f)) (using multi-index notation).
The map πm,s gives a map of rings

R[x, ẋ, . . . , x(s)]

(f, ḟ , . . . , f (s))
= O(Jsp(X))→ O(Jmp (X)) =

R[x, ẋ, . . . , x(m)]

(f, ḟ , . . . , f (m))
.

The first part of the proposition follows from an explicit description of the ideals
given previously (Theorem 2.3). The second part follows from the characterization
of lifts of the Frobenius on rings of the form An = B/pn+1 (c.f. (2.10)). �

3.2. Remarks on p-formal schemes. The construction of p-jet spaces associated
to a scheme X/R where R = Wp,∞(F̄p) gives a system of maps

...

��

...

��

· · · // Jrp (X)n //

��

Jrp (X)n−1
//

��

· · ·

· · · // Jrp (X)n //

��

Jrp (X)n−1
//

��

· · ·

...
...

The p-formal schemes Ĵrp (X) := colimnĴ
r
p (X)n used by Buium (in say [Bui05])

behave nicely. Officially the limit should be taken as in [Sta14, TagOAI6, Definition
68.5.9] (also see [Sta14, TagOAIT, Lemma 68.8.1] to see this limit is a formal scheme
and [Sta14, TagOAIT, Remark 68.8.3] to see why this limit and the limit from EGA
coincide.) In some sense this means that the appropriate place for p-jet spaces would
be some variant of the p-adic rigid analytic spaces. We make use of these limits in
the subsequent sections.

3.3. Examples. We give some examples that we believe clarify the situation.

Example 3.6. Let R = Wp,∞(k) where k is a perfect field of characteritic p. Let
X = Spec(R[x]/(f)) (using multi-index notation). In the category of R-schemes,
there are no sections s of

J1
p (X)0 J1

p (X1)
π1

// X1

s
ww

,

since this would correspond to a map of rings

s∗ : R[x, ẋ]/(f, p2, ḟ , ˙(p2)) = R0[x, ẋ]/(f, ḟ)→ R1[x]/(f) = R[x]/(f, p2).
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Example 3.7. Let R = Wp,∞(Fp). Write

P1
R =

Spec(R[x]) ∪ Spec(R[y])

∼
where ∼ denotes gluing along Spec R[x, y]/(xy − 1). Then

Ĵ1
p (P1

R) =
Spf(R[x, ẋ]̂ ) ∪ Spf(R[y, ẏ]̂ )

∼
where ∼ denotes gluing of the formal schemes along

Spf(R[x, ẋ, y, ẏ]̂ /(xy − 1, ẋyp + ẏxp + pẋẏ).

4. Proof of Theorem 1.6

The following sections prove Theorem 1.6.

4.1. Step 1: Affine bundle structures.

Definition 4.1. Let X ∈ SchB . An étale coordinate chart of X is pair (U, ε)
consisting of and open subset U ⊂ X together with with an étale morphism ε :

U → A
dimB(X)
B .

Recall that any smooth scheme X/B = R of relative dimension d admits étale
coordinate atlas by affine opens, i.e. there is a cover by affine opens (Ui → X)i∈I
and étale maps fi : Ui → Ad

R.
The following lemma shows that étale coordinate charts induce A1-bundle triv-

ializations of the first jet space.

Lemma 4.2 ([Bui05], Section (3.2) ). Let X and Y be finite dimensional smooth
schemes over R = Wp,∞(F̄p),

(1) If f : X → Y is étale then Ĵ1
p (X) ∼= X̂×̂Y Ĵ1

p (Y ).

(2) If f : X → Ad
R is étale then there exist an isomophism ψf : Ĵ1

p (X) ∼=
X̂×̂Âd

R

Definition 4.3. We call ψf from part 2 of Lemma 4.2 the induced trivialization.

Remark 4.4. If X = SpecA and f∗ : R[T1, . . . , Tn] → A is étale then O(J1(X)) =

O(X)[Ṫ1, . . . , Ṫn ]̂ . Here we have identified the étale parameters Ti with their image
under f∗.

Remark 4.5. We have J1
p (Y )n = (π−1

1 )n(Yn) if Y ↪→ X is an open immersion
R-schemes when X is flat over R.

Definition 4.6. Let X be a smooth projective curve. Let ε1, ε2 : U → A1
R be

two étale coordinate charts. We will say that ε1 and ε2 are compatible and write
ε1 ∼ ε2 if and only if ψε1 ∼An ψε2 .

Consider now, X as an embedded curve: ϕ : X → PN . We will say that H1 ∼ H2

if the associated étale projectsions are compatible: εH1 ∼ εH2 .

Remark 4.7. The relation of compatibility, ∼, is an equivalence relation.

Lemma 4.8. Let G(1, N) denote the Grassmannian of lines in PN .

(1) For H ⊂ G(1, N), there exists some UH ⊂ G(1, N) open such that for all
H ′ ∈ UH(R) we have εH ∼ εH′ .
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(2) Suppose PN1 × PN2 → PN3 , with N3 = (N1 + 1)(N2 + 1) − 1. For all
H ⊂ PN1 there exists some H ′ ⊂ PN3 such that εH ∼ εH′ with respect to
their embeddings.

(3) Suppose that Σ1 and Σ2 are An-structures induced from embeddings ϕ1 :
X → PN1 and ϕ2 : X → PN2 . Then Σ1 = Σ2.

Proof. Variation of an étale parameter gives a family of equations f(x1, x̃2, t) =
0 where t is a coordinate for G(1, N). The condition for incompatibility of the
associated parameter x1 and x̃2 is given by

∂f

∂x1
≡ ∂f

∂x̃2
≡ 0 mod p.

This defines a proper closed subset of G(1, N).
The Segre embedding PN1 × PN2 → P(N1+1)(N2+1)−1 is given by ([xi], [yi]) 7→

[xiyj ]. The image has coordinates [zij ] and is characterized by the vanishing of 2×2
minors. Fixing a line in PN1 then fixing a fiber induces an identical projection: the
restriction to Zij = 0 for i 6= N2 and replacing [yj ] with [zN2j ] in the equations
defining H2 in PN2 give us our hyperplane which induces the same projection as
εH2 .

Using the notation as in part 1, let H1 ⊂ PN1 and H2 ⊂ PN2 be hyperplanes.
Let N3 = (N1 + 1)(N2 + 1) − 1 and H ′1, H

′
2 ⊂ PN3 be such that εH1

∼= εH′1 and
εH2
∼= εH′2 as per part 2. Consider now UH′1 and UH′2 open subset of G(1, N3) as in

part 1. Both of these are nonempty by the existence of the structures Σ1 and Σ2.
Since the interesection of two nonempty open set is open we are done. �

4.2. Step 2: Existence and uniqueness of an An-structure. .
Let R = Wp,∞(Fp). We define a subset of automorphisms of degree n mod pn

An := {a0 + a1T + pa2T
2 + · · ·+ pn−1anT

n : a1 ∈ O×Xn , ai ∈ OXn} ⊂ Aut(A1
Rn−1

).

Proposition 4.9. An ⊂ Aut(A1
Rn−1

) is a subgroup. Also, it is a group scheme

over Rn−1 given by

An = SpecRn−1[a0, a1,
1

a1
, pa2, . . . , p

n−1an].

Proof. We will first show that An is closed under composition and then show that
An is closed under taking inverses. Let

f(T ) = a0 + a1T + pa2T
2 + · · ·+ pn−1anT

n,

g(T ) = b0 + b1T + pb2T
2 + · · ·+ pn−1bnT

n

be elements of An. We claim that g(f(T )) ∈ An.
If is sufficient to show that every term in

pj−1bj(f(T ))j , 1 < j ≤ n− 1

of degree d is divisible by pd−1.
A typical term in the expansion above takes the form

A = pj−1 · (pi1−1ai1T
i1) · · · (pij−1aijT

ij ),

has degree greater than d. This means that i1 + i2 + ... + ij = d and that pd−j =
pi1+i2+...+ij−j which means that A is of the form A = pd−1ai1 ...aijT

d and that every

coefficient T d in the expansion of g(f(T )) is divisible by pd−1. In particular note
that g(f(T )) has degree n mod pn which shows that An is closed under composition.
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We will now show that if f ∈ An then f−1 ∈ An. Fix f(T ) = a0 +a1T +pa2T
2 +

· · · + pn−1anT
n. We proceed by induction on n. The base case is n = 2 we have

proved everything. Now suppose that

f(g(T )) = g(f(T )) = T mod pn

we need to show that g ∈ An. By induction we know that we can write (by
rearranging terms if necessary)

g(T ) = gn−1(T ) + pn−1G(T )

where G(T ) has order greater than n and

gn−1(T ) = b0 + b1T + pb2T
2 + · · ·+ pn−2bn−1T

n−1.

We will assume that G(T ) has degree greater strictly greater that n and derive a
contradiction. Examining

g(f(T )) = gn−1(f(T )) + pnG(f(T )) mod pn

we know from the previous proposition that

deg(gn−1(f(T ))) ≤ n.
We also know that

pn−1G(f(T )) = pn−1G(a0 + a1T )

and that the degree of G(f(T )) is exactly the degree of G(T ) since a1 is a unit.
This means that g(f(T )) = T mod pn has degree strictly greater than n which is
a contradiction. This shows that g(T ) actually has degree n and hence g(T ) ∈ An
which completes the proof. �

In what follows we let fx and fy denote the usual partial derivatives of f with
respect to x and y respectively.

Lemma 4.10 (Local Computations). Let C = V (f) be a plane curve over R =
Wp,∞(Fp) with f ∈ R[x, y]. Let U = D(fx) and V = D(fy) and εU and εV be

the étale projections to the y and x axes of A2 and let ψU : J1
p (U) → Û×̂Â1 and

ψV : J1(V )→ V̂ ×̂Â1 be the associated affine bundle trivializations5.

(1) If fx or fy is not identically zero modulo p then the transition map ψV U :=

ψV ◦ ψ−1
U has the property that

ψUV ⊗R Rn ∈ An
for each n ≥ 2.

(2) If deg(f) < p then fx or fy is not identically zero modulo p.

Proof. Assume without loss of generality that fy 6= 0 mod p. The maps εU : U →
A1 given by (x, y) 7→ y and εV : V → A1 given by (x, y) 7→ x are étale. On these
open sets we have O1(U) = O(U)[ẏ]ˆ and O1(V ) = O(V )[ẋ]p̂. This means we have

O(J1(U ∩ V )) = O(U ∩ V )1 = O(U ∩ V )[ẋ]p̂ = O(U ∩ V )[ẏ]p̂.

5 see Lemma 4.2
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Let ψU : J1(U)→ Û×̂Â1 be given by t 7→ ẏ and ψV : J1(V )→ V̂ ×̂Â1 be given by

t 7→ ẋ. We can compute the transition map ψV ◦ ψ−1
U ∈ Aut(Â1)(U ∩ V ) by first

computing what ẏ is in terms of ẋ. We first have

δf ≡ 1

p
[fφ(xp, yp)− f(x, y)p] +∇fφ(xp, yp) · (ẋ, ẏ)

+
p

2
[fφxx(xp, yp)ẋ2 + 2fφxy(xp, yp)ẋẏ + fφyy(xp, yp)ẏ2]

≡ 0 mod p2 in O(U ∩ V )[ẏ]̂

where for a polynomial g(x) = a0 + a1x + · · · + anx
n the polynomial gφ(x) :=

φ(a0) + φ(a1)x + · · · + φ(an)xn as usual and ∇f = (fx, fy) is the usual gradient
from calculus.

Let

A = R+ fφx(xp, yp)ẋ+ pfφxx(xp, yp)ẋ2/2,

B = fφy(xp, yp) + pfφxy(xp, yp)ẋ,

C = fφyy(xp, yp)/2,

R = (fφ(xp, yp)− f(x, y)p)/p

then, solving the equation A+Bẏ + Cẏ2 = 0 gives

ẏ = −A
B

+ p
A2C

B3
.

Since

pB−3A2C = p
(R+ fφx(xp, yp)ẋ)2fφyy(xp, yp)

2fφy(xp, yp)3

AB−1 =
1

fφy(xp, yp)
[R+ fφx(xp, yp)ẋ+ pfφxx(xp.yp)ẋ2/2

−pf
φ
xy(xp, yp)ẋ

fφy(xp, yp)
(R+ fφx(xp, yp)ẋ)]

we get

(4.1) ẏ = α+ βẋ+ pγẋ2

where

α = − R

fφy(xp, yp)
+ p

R2fφyy(xp, yp)

2fφy(xp, yp)3

β = −−f
φ
x(xp, yp)

fφy(xp, yp)
+ p

fφxy(xp, yp)R

fφy(xp, yp)2
+
pRfφx(xp, yp)fφyy(xp, yp)

fφy(xp, yp)3
,

γ = −f
φ
xx(xp, yp)

2fφy(xp, yp)
+
fφxy(xp, yp)fφx(xp, yp)

fφy(xp, yp)2
+
fφx(xp, yp)2fφyy(xp, yp)

2fφy(xp, yp)3
.

We will now show that ẏ ≡ a0 + a1ẋ+ pa2ẋ
2 + · · ·+ pnan+1ẋ

n+1 mod pn+1 by
induction. We have proven the base case and proceed to solve for ẏ in terms of ẋ
as we did before inductively. As before we have

δ(f(x, y)) =
1

p

(
fφ(xp + pẋ, yp + pẏ)− f(x, y)p

)
= 0.
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We use the expansion

fφ(xp + pẋ, yp + pẏ) =
∑
d≥0

pd−1hd(ẋ, ẏ)

where hd are homogeneous polynomials of degree d in ẋ and ẏ with coefficients in
R[x, y]/(f); this gives

(4.2)
fφ(xp, yp)− f(x, y)p

p
+

n∑
d=1

pd−1hd(ẋ, ẏ) ≡ 0 mod pn+1.

By inductive hypothesis we may assume ẏ = A+pnB whereA = a0+
∑n
j=1 p

j−1aj ẋ
j .

Expanding the homogeneous polynomials gives

hd(ẋ, ẏ) = hd(ẋ, A+ pnB) = hd(ẋ, A) +
∂hd
∂ẏ

(ẋ, A)pnB mod pn+1

and substituting into equation 4.2 we get
(4.3)

r+

n∑
d=1

pd−1

(
hd(ẋ, A) +

∂hd
∂ẏ

(x,A)pnB

)
= r+

n∑
d=1

pd−1hd(ẋ, A)+

n∑
d=1

pd−1 ∂hd
∂ẏ

(ẋ, A)pnB

where r = fφ(xp,yp)−f(x,y)p

p . Note that the left terms on the right side of equation

4.3 can be written as

r +

n∑
d=1

pd−1hd(ẋ, A) = pnC

and the term on the right can be written as
n∑
d=1

pd−1 ∂hd
∂ẏ

(ẋ, A)pnB ≡ ∂h1

∂ẏ
(ẋ, A)pnB mod pn+1.

Using the fact that h1 = fφx(xp, yp)ẋ+fφy(xp, yp)ẏ we have ∂h1

∂ẏ (x,A) = fφy(xp, yp)

which tells us that pnC + fφy(xp, yp)pnB ≡ 0 mod pn+1 and hence that C +
fφy(xp, yp)B ≡ 0 mod p and finally that

B = −C/fφy mod p.

It remains to show that B has degree less than or equal to n in ẋ.
We note that pnC = r +

∑n+1
d=1 p

j−1hd(ẋ, A) mod pn+1 where we can write
hd(S, T ) =

∑
j+k=d a

d
j,kS

jT k, where adj.k ∈ R[S, T ]/(f). We can expand the ex-
pression

(4.4) pd−1hd(ẋ, A) = pd−1hd(ẋ, a0 + a1ẋ+ · · ·+ pn−2an−1ẋ
n−1)

so that its general term takes the form

pd−1adi,j ẋ
i(a0 + a1ẋ+ pa2ẋ

2 + · · ·+ pn−2an−1ẋ
n−1)j .

We expand this general term further to get

(a0 + a1ẋ+ pa2ẋ
2 + · · ·+ pn−2an−1ẋ

n−1)j

=
∑

j0+j1+···+jn−1=j

aj00 (a1ẋ)j1(pa2ẋ
2)j2 · · · (pn−2an−1ẋ

n−1)jn−1

=
∑

j0+j1+···+jn−1=j

aj00 a
j1
1 a

j2
2 · · · a

jn−1

n−1 p
j2+2j3+3j4+···+(n−2)jn−1 ẋj1+2j2+3j3+···+(n−1)jn−1
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So that a general term of equation 4.4 takes the form

αpaẋb

where α ∈ O(U) and

i+ j = d

a = d− 1 + j2 + 2j3 + · · ·+ (n− 2)jn−1

b = i+ j1 + 2j2 + · · ·+ (n− 1)jn−1

j = j0 + j1 + · · ·+ jn−1

Using these relations we show

a = d− 1 + j2 + 2j3 + · · ·+ (n− 2)jn−1

= i+ j − 1 + j2 + 2j3 + · · ·+ (n− 2)jn−1

= i− 1 + j0 + j1 + 2j2 + 3j3 + · · ·+ (n− 1)jn−1

= i− 1 + j0 + (b− i)
= b− 1 + j0

Which tells us the a = b − 1 + j0 ≥ b − 1. Notice that the degree of the general
term is b and we want to show that b ≤ n + 1. Suppose this is not the case and
that b > n + 1. This implies that a > n which implies αpaẋb ≡ 0 mod pn+1; so
such a term doesn’t contribute to ẏ mod pn+1. This concludes the proof.

We will now prove the second part of the theorem. Let f ∈ R[S, T ], and write

f(S, T ) =
∑d
k=0 fk(S, T ) where fk homogeneous of degree d i.e. f0 = a00, f1 =

a10S + a01T , f2 = a20S
2 + a11ST + a02T

2 and so on. We have fd 6= 0 since f is of
degree d

Using this decomposition we can compute the partial derivatives term-wise to
get

∂f

∂S
=

d∑
k=1

∂fk
∂S

,
∂f

∂T
=

d∑
k=1

∂fk
∂T

.

If ∂f
∂S ≡

∂f
∂T ≡ 0 mod p identically then

S
∂f

∂S
+ T

∂f

∂T
=

d∑
k=1

(
S
∂fk
∂S

+ T
∂fk
∂T

)
=

d∑
k=1

kfk ≡ 0 mod p

and since R0[S, T ] ≡⊕k≥0(R0[S, T ])k we must have that kfk(S, T ) ≡ 0 mod p for

k = 1, . . . , d. If p - k this means that fk(S, T ) = 0 which tells us that

f(S, T ) = h(Sp, T p) + pg(S, T ).

Note in particular that

∂f

∂S
≡ ∂f

∂T
≡ 0 mod p =⇒ deg(f) ≥ p.

�

The following remark gives our conventions for projections to and from linear
subspaces of projective spaces.
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Remark 4.11 (remarks on projections). By a decomposition of Pn (over R) we will
mean a collection of linear forms λ = {l0, . . . , ln} in general position together with
its associated linear subspaces. For 0 ≤ d ≤ n we will let λr denote the collection of
hyperplanes generated by λ of dimension d. For each such linear subspace Λ we will
let Λ′ denote is complementary subspace and πΛ′

Λ denote the linear projection onto

Λ with center Λ′. For a linear subspace Λ of X and a point x of X we will let x,Λ
denote the linear subspace spanned by Λ and all the lines passing through points of

Λ and x. Complementary subspaces have the property that x,Λ ∩ x,Λ′ = x, πΛ
Λ(x)

is the unique line passing through x and the point of its projection. We will denote
this line by L(Λ,Λ′, x). For a given X ⊂ Pn and a complementary pair of subspace

Λ,Λ′ we will let XΛ denote the open subset of X where πΛ′

Λ restricted to X is étale
onto its image.

Lemma 4.12. Let X ⊂ Pn be a smooth projective curve. Suppose Λ and Λ′ are
complementary linear subspaces of Pn. π = πΛ′

Λ : X \ (X ∩ Λ′) → Λ is étale at

x ∈ X if and only if x, π(x) 6= TX,x.
If X = V (f(x, y)) is an affine plane curve, the projection to the x-axis is étale

if and only if ∂f/∂y 6= 0. Similarly for projections to the y-axis.

Proof. By change of coordinates and by localness of the problem one only needs to
consider projections π : An

R → Ar
R defined by π(x1, . . . , xr, . . . , xn) = (x1, . . . , xr)

and curves of the form X = Spec R[x1, . . . , xn]/(f1, . . . , fe).

Let a be a point of X not in Λ. The lines of projection a, π(a) are the unique
lines connecting the a and π(a) which one can compute explicitly.

Let J(a) be the jacobian of f = (f1, . . . , fe) with respect to the variables
(xr+1, . . . , xn) evaluated at a.

We use the following two facts:

(1) The condition on π being étale is equivalent to the J(a) having maximal
rank.

(2) The condition that a, π(a) ⊂ TX,a is equivalent to J(a) ·

ar+1

...
an

 = 0.

Suppose that π is étale at a ∈ X. By the property 1, J(a) has full rank. This
implies there exists a left inverse K such that K · J(a) is the n− r× n− r identity

matrix. The existence of such a K contradicts a, π(a) ⊂ TX,a in view of property
2.

Conversely suppose that a, π(a) is not contained in TX,a. This is equivalent to

J(a) ·

ar+1

...
an

 6= 0,

by property 2. This implies that J(a) has rank at least one. Since J(a) has rank
at most one it has full rank which is equivalent to étaleness by property 1.

The second property is a special case of the first. �

Figure 1 shows the projection from a line to another line.
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q = Λ′

p

p′

πΛ′
Λ (p′)πΛ′

Λ (p)
Λ

X

étale

not étale

Figure 1. A projection in to Λ with center Λ′.

Lemma 4.13. Let X ⊂ Pn
R be a smooth irreducible curve of degree d < p. Let π1

and π2 be projections onto lines in P2
R ⊂ Pn

R where the centers of projections do
not intersect X.

Let ε1, ε2 : U → A1
R be restrictions of π1 and π2 so that they are both étale onto

their image.

(1) The map σ := (ε1×ε2)∗ : R[S, T ]→ O(U) has the property that the induced
map σ0 : R0[S, T ]/(f̄)→ O(U)/p is injective.

(2) Let ψ1, ψ2 : J1(U) ∼= Â1×̂Û denote the affine bundle trivializations associ-
ated to ε1 and ε2 respectively. For every n ≥ 1 we have

ψ21 ⊗R Rn ∈ An.

Proof. In what follows an overline will denote a Zariski closure.
Let ε∗1(T ) = x and ε∗2(T ) = y where T is the étale parameter on A1. Define

σ : R[S, T ] → O(U) := B by S 7→ x and T 7→ y. Since the image of σ is an
integral domain we know that ker(σ) is a prime ideal. Since R[S, T ] is a UFD and
the ker(σ) has height 1 we know that there exists some irreducible f ∈ R[S, T ] such
that ker(σ) = (f). This f is the minimal relation among x and y and we have the
equation f(x, y) = 0. Geometrically we have

ε1 × ε2(U) = V (f) ⊂ A2,

where f is a dehomogenization of F where F defines π(X) = V (F ) ⊂ P2. We
know that f is irreducible by topological considerations. Note that the image is
not necessarily non-singular or even flat.
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X

L

M

N

π2π1

π2(X)
π1(X)

Figure 2. A curve X ⊂ PN with two projections onto Λ1 =
L,M and Λ2 = M,N both isomorphic to P2. The étale projec-
tions εL, εM and εN to the lines L,M and N which induce the
trivializations on the J1(X) factor through the projections π1 and
π2

We will now show that π0(U0) = π(U)0 by demonstrating a closed immersion

π0(U0) ⊂ (π(U))0 and deg(π0(U0)) = deg(π(U)0).6

Let J ⊂ R[S, T ] be the ideal defining π0(U0) ⊂ A2
R. By commutativity of

R[S, T ]
σ //

α

��

B

��

R[S, T ]/p
σ0 // B/p.

we have (f, p) ⊂ ker(α ◦ σ0) = J . This implies π0(U0) = V (J) ⊂ V (f, p) =

(π(U))0 ⊂ A2
R.

Observe deg(π0(U0)) = deg(π0(X0)) = deg(X0) = d. On the other hand

deg(π(U)0) = deg(π(X0)) = deg(F mod p) ≤ d = deg(π0(U0)).We can now con-
clude that (f, p) = J .

This implies that ker(σ0) = J/(p) = (f̄). Since A0/(f̄) = A0/ ker(σ0) ↪→ O(U0)
We can work directly with the equation f(x, y) = 0. In particular we use nonvan-
ishing of ∂f/∂x and ∂f/∂y which follows from the description of étale projections

6 Let X = X1 ∪ . . .∪Xr is a decomposition into irreducible components and write Xi = V (fi)

where fi is an irreducible polynomial. This implies X = V (f) where f =
∏r
i=1 fi. This implies

deg(X) ≥ deg(Xi). We have deg(X) ≥ deg(Xi).
Note that if deg(X) = deg(Xi) then X = Xi. This is because fi|f and deg(fi) = deg(f)

implies deg(f/fi) = 0 which implies (f) = (fi).
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(Lemma 4.12)

∂f

∂p
+ fφx(xp, yp)ẋ+ fφy(xp, yp)ẏ

+
p

2
(fφxx(xp, yp)ẋ2 + 2fφxy(xp, yp)ẋẏ + fφyy(xp, yp)ẏ2 ≡ 0 mod p2

where ∂f
∂p = fφ(xp,yp)−f(x,y)p

p ∈ O(U).

Hence ψ21 can be computed by solving for either ẋ in terms of ẏ or ẏ in terms of ẋ.
This is possible mod pn for every n ≥ 2 if either fx(xp, yp) or fy(xp, yp) is invertible
in O(U)0. This is equivalent to having fx or fy being not identically zero mod p and
the projections are étale on U exactly when the partial derivatives are nonvanishing.
This is true since the morphisms σ0 : R0[S, T ]/(f) → O(U)/p is injective (which
we just proved). We now apply the local computations (Lemma 4.10) to establish

ψ21 mod pn ∈ An
for each n ≥ 2. �

[0, 0, 0, 1]

[0, 0, 1, 0]

[0, 1, 0, 0]

[1, 0, 0, 0] X4 = 0

X0 = 0
X2 = 0

X1 = 0

Figure 3. A picture of P3 with its standard decomposition.

x

A

A′
B

B′

Figure 4. If there exists some point x such that TxX is equal
L(Λ′,Λ, P ) for all Λ ∈ λ2 then we would have AA′ = B′B. The
situation looks very bad in this simple case.
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Lemma 4.14. Let R = Wp,∞(k) where k ⊂ F̄p. Let X ⊂ Pn
R be a smooth ir-

reducible curve. There exists a system of linear forms λ = {l0, . . . , ln} such that
(XΛ → X)Λ∈λ2 form a cover and which πΛ : XΛ → A1

R ⊂ P1
R étale onto its image.

(cf section 4.11).

Proof. It suffice to show that there exists a decomposition λ over F̄p since we can
lift any such decomposition to R.

Suppose in addition that X ⊂ PN is a curve and that for all Λ′ ∈ λN+1−2 ∪
λN+1−3 we have X ∩ Λ′ = ∅ so that all of the projections

πΛ′

Λ : X → Λ ∼= P1 or P2

are well-defined. Without loss of generality we can assume that the decomposition
λ comes from the coordinates X0, . . . , XN on PN .

Suppose that there exists some x ∈ X such that for all Λ ∈ λ2 that πΛ′

Λ (x) is not
étale at x. Using the notation introduced in equation ?? we would have

L(Λ′,Λ, x) = TxX

for all x ∈ X. Here TxX is interpreted as the physical tangent line for the embedded
curve X. This leads a silly situation which we will show cannot be possible by means
of synthetic argument. See figures 4.2 and 4.2 for a picture of this situation.

Suppose that M,N ∈ λ2 are not equal and let L = L(M,M ′, x) and K =
L(N,N ′, x). We claim that not both L and K can be in the tangent space of x.

Let A be the unique point where L intersects M and A′ be the unique point
where L intersects M ′. Define B and B′ similarly for N and N ′. If both L and
K are lines tangent to X at x /∈ λ1 we have L = K. This implies L intersects M
at A. This also implies L also intersects N at B. But M and N intersect in a
unique point C. This means that M , N and L are contained in the unique plane
π spanned by A, B and C. Since π is also the unique plane spanned by M and
N , this means that π ∈ λ3. But by hypothesis we supposed that x was not in any
π ∈ λ3 which is a contradiction.

It remains to show that for every curve X ⊂ PN
F̄p

there exists some decomposition

λ such that X does not intersect any Λ′ ∈ λN+1−3. This can be done by the moving
lemma and dimension counting.

Recall that if X and W are subvarieties of PN we say they intersect properly if

dim(X ∩W ) = max{dim(W ) + dim(X)−N, 0}.
Let W be the unions of the centers of projections to coordinate planes. W =⋃

Λ∈λ3
Λ′. Since W has dimension N − 1 − 2 and X has dimension 1 if W and X

intersected properly we would have

dim(X ∩W ) = (N − 1− 2) + 1−N = −2

which imply that the intersection is empty. By the moving lemma (F̄p is an infinite
field) we can arrange so that X and W have an empty intersection. �

Theorem 4.15. Let R = Wp,∞(k) where k = Fp. Let Xd ⊂ PN
R be a smooth

irreducible curve of degree d and suppose that d > p then for every n ≥ 1, J1
p (X)n →

Xn admits an An-structure.

Remark 4.16. Lemma 4.8 part gives uniqueness of the An-structure.
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Proof. Let λ = {l0, . . . , ln} as in Lemma 4.14. By change in coordinates we can
assume without loss of generality that the l0, . . . , ln are the coordinate hyperplanes
given by li = V (Xi). Let l′0, . . . , l

′
n be the coordinate axes, Let Ui be the subset of

X where the projection map to l′i is étale and εi : Ui → A1 be the étale projection.

and let ψi : J1
p (Ui)→ Ûi×̂Â1

R be the affine bundle chart of Ĵ1(X) associated to εi.
For each pair of lines Λ1,Λ2 ∈ λ1 one can see that πΛ1

and πΛ2
factor through πΛ

where Λ = Λ1,Λ2. Letting U = XΛ1
∩XΛ2

puts us in the hypotheses of Lemma 4.13.
If ψ1 and ψ2 are the associated transition maps we have ψ12 = (ψ1 ◦ψ−1

2 )⊗RRn ∈
An(Uij) for every n ≥ 1 which proves our result. �

4.3. Steps 3 and 4: Reduction of an An-structure. The following theorem
allows us to reduce the structure group of the first p-jet space of a smooth curve
X/R of genus g ≥ 2.

Theorem 4.17. Let X/R be a scheme and π : E → X an A1
R-bundle. Suppose that

En/Xn admits An-structures. Let [L0] ∈ Pic(X0) be the class naturally associated
to the AL1(OX0

)-structure on E0 as in Remark ??.
If H1(X0, L

∗
0) = 0 then En admits an AL1(OXn)-structure.

Here L∗0 denotes the dual of L0.

Proof. Let ψ
(n)
ij ∈ An+1(Uij) be the transition maps on a trivializing cover for En.

We will prove that ψ
(n)
ij ∼An+1

ψ̃
(n)
ij ∈ AL1(OXn) by induction.

The base case with n = 0 is trivial since Aut(A1
Rn

) = AL1(OX0
).

We will suppose now that ψ
(n−1)
ij ∈ AL1(OXn−1

) and construct some ψi’s in

An+1(Ui) such that

ψiψ
(n)
ij ψ

−1
j ∈ AL1(OXn).

Let 2 ≤ r ≤ n + 1 and define Mn,r ≤ Aut(A1
Rn

) to be the automorphisms of
degree less than or equal to r of the form

ψ = a0 + a1T + pn(b2T
2 + · · ·+ brT

r) mod pn+1.

Note that ψ
(n)
ij ∈Mn,n+1 since ψ

(n−1)
ij ∈ AL1(OXn−1

) and ψ
(n)
ij ≡ ψ

(n−1)
ij mod pn.

We show now prove the following claim: For every r ≥ 2 if ψ
(n)
ij ∈ Mn,r then

there exists some ψij
′(n) ∈Mn,r−1 such that

ψ
(n)
ij ∼Mn,r

ψij
′(n)

and ψ
(n+1)
ij ≡ ψij ′(n)

mod pn+1.

(Note that when we get to r = 2 we will have shown the structure group on En can
be reduced to AL1(OXn).)

For r ≥ 2 define τr : Mn,r → OX0 by

τr(ψ) =
br(ψ)

a1(ψ)
mod p.

Now if ψ̃ = ã0 + ã1T + pn(̃b2T
2 + · · ·+ b̃rT

r) ∈Mn,r is another element we have

τr(ψ ◦ ψ̃) =
a1b̃r + brã1

ã1a1
= τr(ψ)ãr−1

1 + τr(ψ̃).

This shows τr is a group cocycle with respect to the action of Mn,r on OX0
(which

factors through the quotient Mn,r → AL1(OX0) = OX0 o O×X0
→ O×X0

, and O×X0

acts on OX0
via multiplication after raising an element to the (r − 1)-st power.
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The group cocycle τr induces a group homomorphism σr : Mn,r → O×X0
n OX0

given by
σr : ψ 7→ (a1(ψ)r−1 mod p, τr(ψ)).

Note that this is indeed a group homomorphism:

(ar−1
1 , τr(ψ))∗(ãr−1

1 , τr(ψ̃)) = (ar−1
1 ãr−1

1 , τr(ψ)ãr−1
1 +τr(ψ̃)) = ((a1ã1)r−1, τr(ψ◦ψ̃)).

Let (mij , aij) be the image of the cocycle ψ
(n)
ij under the map σr. Note that

(1, 0) = (mij , aij)(mjk, ajk)(mki, aki) = (mijmjkmki)(aijmjkmki + akjmki + aki)

The condition on the aij ’s is a really a condition for a cocycle with values in line
bundles: Let L0 is a line bundle on X0 with trivializations

L0(Ui) = O(Ui)vi

where
vj = mijvi.

Suppose sij ∈ L0(Uij) defines a cocycle and define aij by

sij = aijvj .

Then we have

0 = sij + sjk + ski = aijmijvi + ajkmikvi + akivi.

If follows then that since (mij , aij)) ∈ O×X0
n OX0 define a cocycle then the

collection
sij := aijv

∗
j ∈ L∗(Uij)

define a cocycle in L∗.
By hypothesis H1(X0, L

∗
0) is trivial (a simple Riemann-Roch computation) and

we have
sij = si − sj

for some collection si ∈ L∗0(Ui). Define ai ∈ OX0
(Ui) by

si = aiv
∗
i , i ∈ I.

This gives
si − sj = (aimijak)v∗j

so
aij = aimij − aj

or
−aimij + aij + aj = 0.

In terms of Čech cochains on O×X0
nOX0

this means

(1, ai)(mij , aij)(1, aj) = (mij ,−aimij + aij + aj) = (mij , 0).

Let ψi = T − pnaiT t be elements of Mn,r(Ui). We have

σr(ψi ◦ ψij ◦ ψ−1
j ) = (mij , 0)

which implies that ψi ◦ ψij ◦ ψj ∈ Mn,r−1. Hence we have that for all r ≥ 2 and

all ψ
(n)
ij ∈ Mn,r there exists some ψ

(n)
ij ∈ Mn,r−1 such that ψ

(n)
ij ∼Mn,r ψ

′
ij

(n) and

ψ
(n+1)
ij ≡ ψ′ij(n) mod pn+1. This completes the proof. �

To complete the proof of the Main theorem we apply Theorem 4.17 to E being
the first p-jet space of a curve together with its An-structure given in section 4.2
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Proof of Theorem 1.6. Consider the An-structure on J1
p (X)n coming from Theorem

4.15. We apply theorem 4.17 so that L0 = FTX0 – by Riemann-Roch we have
H1(X0, L

∗
0) = 0 are we are in the hypotheses of Theorem 4.17. �

5. How many torsor structures are there?

In this section we lay the ground work for proof of Theorem 1.10 and Theo-
rem 1.12. This section culminates in the proof of Theorem 1.10.

5.1. Frame bundles and torsors. The standard references for torsors on the
étale site of a scheme is [Mil80, chapter III, section 4.]. One should also consult
[Sko01, Chapter 2, Definition 2.2.1].

By a left principal G-bundle, we will mean fiber bundle over X with fiber G
and structure group G where the transition maps are given by right multiplication.
We define G-torsors over X as in [Sko01, Chapter 2, Definition 2.2.1]. All torsors
are assumed to be locally trivial. The yoga of Fiber bundles and Principal bundles
can be found in [Neu09, section 1.1], [Bre10, Example 1.5] or [Bal09].

It is a standard fact that the category of left G-torsors on X is equivalent to
the category of left principal G-bundles [Mil80, III, section 4, Proposition 4.1]. We
will denote the category by BX(G). Since principal fiber bundles, torsors and fiber
bundles with G-structures are all equivalent we will take morphisms of each of
these objects to be the morphism of the associated G-torsor of frames. All of these
objects are classified by elements of H1(X,G). (See [Sta14, Tag0497] for a proof
for arbitrary sites. A reference for the statement is [Bre10, pg 2]. Also, note that
SGA 4.5 only does abelian torsors!)

5.2. Amalgamated products.

Definition 5.1. Let L be a left G-space over X. Let R be a right G-space over X.
We define the amalgamated product via of L and R by R×G L := (R×X L)/G
Where the right action on the product is defined by ((x, y), g)) 7→ (xg, g−1y).

Remark 5.2. (1) There are two ways to take amalgamated products. Some
authors prefer right amalgamation (see [Bre10, section 1.2], [Hir78, pg
44], [Bal09, Remark 2.2]) and some authors prefer left amalgamation (see
[Mit01, beginning of chapter 3]). It doesn’t matter if you quotient by a left
or right action: define the (left) amalgamated product

R×G L := G\(R×X L)

where the left action on R×X L is given by

(g, (x, y)) 7→ (xg−1, gy).

One can check that R×G L ∼= R×G L.
(2) Let P ′ be a left G′-space. We give G ×G′ P ′ = P ′(G) the structure of a

left G-space given by g · [g0, p
′] = [gg0, p

′]. Note that this is not that action
g · [g0, p

′] = [g0g
−1, p′]. This was extends the G′-action on P ′. This can

give rise to confusion.
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5.3. Preparations for the Steenrod theorem.

Definition 5.3. Let S be a scheme. Let G′ ⊂ G be a closed immersion of affine
group schemes over S. We say that G′ ⊂ G has the Steenrod property if the
quotient map

q : G→ G′\G = Y

is a left principal G′-bundle on Y and the map q : G → G′ \ G is a universal
categorical quotient [vdGM07, Definition 4.5 (iv)].

Quotients in the category of fppf sheaves are automatically universal quotients
[vdGM07, 4.30, page 62] hence it will be convenient to embed all schemes into the
category of sheaves on (SchS)fppf the big fppf site of the category SchS .

Lemma 5.4. Work with big fppf sheaves. Let Y := G′ \G. Let G′Y = G′ × Y with
the Y -map being the canonical projection. Let π : G→ Y be the canonical quotient
map. The left action of G′Y on G over Y , gives G the structure of a G′Y -torsors
over Y .

Proof. Observe that (G′Y ×Y G)(T ) = G′(T )×G(T ) so we can consider the action of

G′(T ) fiber by fiber. For each x ∈ G′(T )\G(T ) the action G′(T )×π−1
T (x)→ π−1

T (x)
is clearly faithful and full. The commutativity of the diagram

G′(T )×G(T ) //

''

G(T )

yy

(G′\G)(T )

gives us an action G′Y ×Y G→ G over Y which as presheaves is a torsor. Sheafifying
preserves the torsor structure.

�

Remark 5.5. (1) In the category of (big fppf)-sheaves the map q : G → G′\G
has a G′ worth of elements in each fiber. There is an action of G′ on each
of the fibers.

(2) The principal bundle condition is equivalent to the existence of a cover of
(Ui → G′\G)i∈I such that q : G → G′\G has sections si : Ui → G such
that σ ◦ si = idUi .

For the remainder of this section we will assume G′ ⊂ G has the Steenrod
property.

The following is to be taken in the category of algebraic spaces.

Lemma 5.6. Let G′ ⊂ G have the Steenrod property. Let (π : E → X) ∈ BG(X).
Let q : E → Y := G′\E be a universal categorical quotient. We have (q : E → Y ) ∈
BG′(Y ).

Proof. It is enough to show that there exists a cover (Yj → Y )j∈J and trivializations
EYj
∼= Yj ×G′ which are isomorphisms of left G′Yj -spaces. There exists a cover by

(Ui → X)i∈I such that EUi
∼= Ui × G as left GUi-spaces. Since Y = G′\E is a

categorical quotient we have that

YUi
∼= G′Ui\EUi ∼= G′Ui\GUi
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and we have the diagram

EUi

��

// Ui ×G
idUi×σ
��

YUi
// Ui ×G′\G

By the Steenrod property there exist a cover (Wk → G′\G)k∈K such that σ : G→
G′\G′ trivializes as a G′-bundle. In other words, there exists isomorphisms

(5.1) ψk : GWk
∼= Wk ×G′

as left G′Wk
-spaces. Base-changing the trivializations ψk by the maps Ui trivialize

the map idUi × σ giving

(Yj → Y )j∈J = (Ui ×Wk → Y )(i,k)∈I×K

as the desired trivializing cover. �

Lemma 5.7. The map ρ : Y → X is a (G′\G)-bundle with G-structure. The
(nonfaithful) representation in the giving the structure G→ Aut(G′ \G) takes g to
the automorphism given by right multiplication by g−1.

Proof. Since π : E → X is a left principalG-bundle there exists a cover (Ui → X)i∈I
and trivializations ψi : EUi → Ui×G such that the transition maps ψij are given by
right multiplication. 7 Using the fact q : E → G′\E = Y is a categorical quotient
we have

YUi = (G′\E)Ui
∼= Ui × (G′\G),

and we see that the transitions between trivializations are given by right multipli-
cation by elements of GUij . �

5.4. Proof of Theorem 1.10. We will now state Steenrod’s theorem concerning
the reduction of structure group F -fiber bundles J → X with structure group G.

Given a principal G-bundle P we get the associated F -fiber bundle with structure
group G by taking F ×G P . Given a F -fiber bundle with structure group G, we
map to the sheaf of trivializations.

Under this correspondence the structure group of the principal bundle P reduces
G′ ≤ G if and only if the structure group of the F -fiber bundle reduces if and only
if there is an element of ξ′ ∈ H1(X,G′) which maps to ξ = cl(J) ∈ H1(X,G) under
the natural map induced by G′ → G.

We can now describe how to get reductions of principal fiber bundles with struc-
ture group G. Let π : P → X be such a left G-torsor. Here we quotient our left
G-torsor P by the subgroup G′ ≤ G we are interested in to get

Q := G′\P.

This gives us a factorization of the map π : P → X from the principal bundle to
the base space as a map to the quotient q : P → G′\P = Q then a map to the base

7 This is equivalent to ψi being an isomorphisms of left GUi -spaces.
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π′ : Q→ X:

P

π

��

q

$$

G′\P = Q

ρ
zz

X

.

The map q from the original principal bundle P to the quotient Q = P/G
turns out to be a principal G′-bundle over Q for the subgroup G′ ≤ G we were
considering. When viewing P as a principal G′-bundle over Q we use the notation
PQ. It turns out that one can parametrize all reductions as sections of Q modulo
automorphisms:

Theorem 5.8 (Steenrod’s Theorem). In the category Shv((SchS)fppf ) fix the fol-
lowing:

• G′ ⊂ G inclusion of subgroups
• P = (π : P → X) ∈ BG(X)
• Q := G′\P ∼= G′\G×G P
• PQ = (q : P → Q) := G′\P ×G P ∈ BG′(Q)

Let ρ : Q→ X fit into the diagram

P
q

$$

π

��

X Q = G′\P
ρ

oo

.

The following statements hold:

(1) PQ is a G′-reduction of ρ∗PX . More precisely, the pair (PQ, ϕ) where

ϕ : G×G′ PQ → ρ∗PX

ϕ([g, e]) = [g · e, q(e)].
makes (PQ, ϕ) a G′-reduction of ρ∗PX .

(2) If s ∈ Γ(X,Q) then s∗(PQ) ∈ BX(G′) and there exists and isomorphism of
G-torsors α = αs : G′×G s∗(PQ)→ P making s∗PQ are G′-reduction of P .

(3) All reductions (P ′, ϕ) of P to structure group G are isomorphic to reduc-
tions coming from pullbacks of sections of Q = G′\P . In fact, the associated
(P ′, ϕ) 7→ sϕ ∈ Γ(X,Q) is canonical.

(4) Let s1, s2 ∈ Γ(X,Q). Let P1 = s∗1PQ and P2 = s∗2PQ be the associated
reductions.

P1
∼=BXG′ P2 ⇐⇒ ∃α ∈ Aut(PX), αs1 = s2.

Proof. Since we are working with sheaves we may check everything on the level of
points.

(1) We just need to check that the map alpha defines a morphism of left G-
torsors. First observe that the action on the amalgamated product is g ·
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[g0, e] = [gg0, e]. Next observe that the action of G on PQ = ρ∗PX = P×XQ
is given by g · (e, y) = (ge, y). We now consider the map

α : [g0, e] 7→ (g0e, q(e)).

We show that the map alpha in fact lands in PY :

π(g0e) = ρ(q(e)) = π(e).

We show that α is well-defined: we only need to check that α([g0g
′, (g′)−1e]) =

α([g0, e]) for each g′ in G′. This follows from

α([g0g
′, (g′)−1e]) = (g0g

′(g′)−1e, q(g0g
′(g′)−1e))

= (g0e, q(g0e))

= (g0e, q(e))

= α([g0, e]).

We show that α is G-equivariant: recall that

g · [g0, e] := [gg0, e],

g · (e, y) := (ge, y).

We have

α(g · [g0, e]) = α([gg0, e])

= [gg0e, q(e)]

= g · (g0e, q(e))

= g · α([g0, e]).

Since any morphism of G-torsors is an isomorphism we are done.
(2) We will prove that the G′-bundle s∗PQ comes with a natural isomorphism

ϕ = ϕs : G×G′ s∗PQ → PX

making it a G′-reduction of PX . The proof is the following string of equal-
ities:

PX = (ρ ◦ s)∗PX
∼= s∗(ρ∗PX)

= s∗(G×G′ PQ)

= G×G′ s∗PQ.
The last line follows from [Mit01, Proposition 3.6] which states that base
change and amalgamated product commute for F -bundles withG-structures.
8

(3) To every reduction (P ′, ϕ) there is a canonical section s of ρ : Q→ X and
an isomorphism P ′ ∼= s∗PQ of G′-bundles.
• Take the G′-equivariant map f = fϕ defined by the composition9

P ′ → P ′(G) = G×G′ P ′ →ϕ P,

p′ 7→ [1, p′] 7→ ϕ([1, p′]).

8 Let (p : E → B) ∈ Bun(F ;G)/B. Let f : B′ → B. f∗(P ×G F ) ∼= (f∗P )×G F .
9 The left action of G on G×G′ P ′ is given by g · [g0, p′] = [gg0, p′]. The morphism ϕ : P ′ →

G×G′ P ′ is G′-equivariant ϕ(g′ · p′) = [1, g′p′] = [g′, p′] = g′ · ϕ(p′).
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• Take the quotient by G′ and descend f to a map

X ∼= G′\P ′ → G′\P = Q,

which gives our section s.
It remains exhibit a canonical isomorphism of G′-bundles α : P ′ ∼= s∗PQ.

Note that s fits into the fiber diagram.

(5.2) P ′
fϕ

//

G′q′

��

P

G′

��

X = G′\P ′ s // G′\P =: Q

We claim the map

α := q′ ×Q fϕ : P ′ → s∗PQ = X ×s,Q PQ

does the trick. It is enough to show a morphism of G′ spaces.
From the pullback diagram (5.2) there is clearly a morphism P ′ → s∗PQ

of schemes. Observe the following:
• The map fϕ is G′-equivariant.
• The G′-action on s∗PQ comes from the G′-action on PQ by base

change.
• α which is the base change of fϕ and hence is G′-equivariant. This

proves α is a G′-morphism of torsors and hence gives us the desired
isomorphism.

(4) The forward direction is the “easy” one: given a section, one can show that
the pullback by the section and the pullback by an acted one section are
isomorphic.

Let (P ′1, ϕ1) and (P ′2, ϕ2) be two reductions of P to structure group G′.
Suppose that we have an isomorphism of G′-bundles α : P ′1 → P ′2. Let s1

and s2 be the canonically associated sections of (P ′1, ϕ1) and (P ′2, ϕ2). We
claim that there exists an automorphism γ = γα such that s1 = γ ◦ s2.

We first how to explain how to get an automorphism from two sections
α : P ′1 → P ′2: Consider the diagram

P ′1(G)
G×G

′
α

//

ϕ1

""

P ′2(G)

ϕ2

||
P

which when you follow around backwards from P gives you the automor-
phism γ = γα:

γ = ϕ2 ◦ (G×G′ α) ◦ ϕ−1
1 .
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We now have a G′-equivariant diagram:

P ′1

fϕ1

��

α // P ′2

fϕ2

��

P ′1(G)

ϕ1

��

P ′2(G)

ϕ2

��

P
γα // P

,

Where we are using notation from the proof of Lemma 5.8 (3). From
the proof of Lemma 5.8 (3), we know that taking the G′-quotient of this
diagram gives

X
sϕ1

""

sϕ2

||

G′\P γ
// G′\P

,

which proves our result.

�

Remark 5.9. Let i : G′ → G denote the inclusion map. In terms of cohomology we
have ξ′ = cl(π) ∈ H1(X,G) and ξ′ = cl(q : E → Q) ∈ H1(Q,G′) then

is∗ξ′ = ξ.

6. Geometry of group cocycles and moduli of reductions

6.1. Affine linear structures and torsor structures. In this section we want to
describe to what extent ALn-structures on affine bundles determine torsors under
vector bundles. First there is the obvious: given an ALn-structure on an affine
bundle we can define a torsor structure on the level of points by subtracting two
sections in the affine coordinates. Because of affine linearity, this gives a well-
defined torsor structure under some vector bundle. One may wonder: what is the
vector bundle associated to this torsor structure? Well, this is the vector bundle
pieced together from transition maps determined by the “linear” part of the “affine
linear” transition. One way expressing the vector bundle is by saying it is a vector
bundle E with trivializations ϕi : E|Ui → On|Ui such that the transitions ϕij are
the image of the cocycle associated to the affine linear structure under the map
ALn → GLn.

This establishes that ALn-structures give torsors under line bundles, but how
well-defined is this process? For example does an ALn-structure determine the
torsor structure up to isomorphism? We first fix what we mean by a “torsor struc-
ture”.

Definition 6.1. A group-torsor pair will be a triple (E, J, ρ) consisting of two
sheaves (in whatever topology you want) E, and J where E is a sheaf of locally free
OX -modules together with a morphism of sheaves ρ : E × J → J giving a full and
faithful action of E on J . A morphism of group-torsor pairs will be a morphism
locally free sheaves E1 → E2 such together with an equivariant morphisms J1 → J2.
This category will be denoted by GTPAIRS.
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I want to describe now the extent to which the ALn-cocycle determines the group
torsor structure. The correct way to do this appears to be in terms of ”Descent
Data” for the group-torsor pair on the underlying affine bundles.

Definition 6.2. We define the category of DD(U , E, J) for affine bundles E and
J . Objects will be pairs (ψi, ϕi) consisting of an ALn-atlas (ψi : EUi → Ui ×Ar)
for J and a GLn-atlas (ϕi : EUi → Gr

a,Ui
) for E such that ϕij(v) = Bijv and

ψij(t) = aij + Bijt. Isomorphisms will be a collections (ai + Bit) ∈ C0(U ,ALn).
The collection (ai + Bit) will be viewed as a morphism (ψi, ϕi) → (ψ′i, ϕ

′
i) where

ψi’ and ϕ′i are given by ψ′i = (ai +Bit) ◦ ψi and ϕ′i = Bi · ϕi.
One would hope to make a statement like “the functor from group-torsor pairs

on underlying vector bundles to descent data on underlying vector bundles is an
equivalence of categories”. This seems to be too silly. However, there is a functor
from descent data to group-torsor pairs with the property that every isomorphism
of descent data induces the identity of the group torsor pair.

Lemma 6.3. There is a functor from

construct : DD(U , E, J)→ GTPAIRS

defined such that every isomorphism of descent data induces the identity of the
group-torsor pair.

Proof. We describe how to construct a group torsor pair up to isomorphism. Let e1

and e2 be local sections of J . Fix a collection of trivializations Ψ = (ψi). Consider
the division map −Ψ defined by

(6.1) e1 −Ψ e2 := ψ−1
i (ψi(e1)− ψi(e2)).

(1) The division map is well-defined: It suffices to look at two trivializations
ψ1 and ψ2. Observe that

ψ1(e1)− ψ1(e2) 7→ϕ21 Lg21(ψ1(e1)− ψ1(e2))

= Lg21ψ(e1) + β21 − (Lg21ψ1(e2) + β21)

= ψ2(e1)− ψ2(e2),

so the division map is well-defined. The action is faithful because it is
locally.

(2) The action is −(ψi) independent of the choice of trivialization: Let (bi, gi) ∈
C0(U ,ALr) and (ψi) a collection of ALn- compatible trivializations. One
verifies that

e1 −(bi,gi)·(ψi) e2 = e1 −(ψi) e2

directly on the nose (c.f. Definition 6.1 and the fact that the ψi’s induce
local isomorphisms of the pairs (E|Ui, J |Ui) and (E|Ui,Or|Ui) ).

(3) We claim the group-torsor pair (E, J) associated to the isomorphism class of
(ψi, ϕi) is unique. We need to show that after acting on a pair (ψi, ϕi) by an
element (bi, gi)i∈I ∈ Z1(U ,ALn) diagonally we get the same group-torsor
pair. First observe that the vector bundle doesn’t change since modifying
(ϕi) just gives a different set of trivializations. The rest follows from what
has previously been stated.

�
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Now that we have answered this question we can ask how this construction of
torsors relates to the well-known ”torsors are classified by H1(E)” statement. Here
we view an E-cocycle as objects of a category and coboundaries as morphisms
between them. We will call this category DD(U , E). To setup a correspondence
between appropriate ALn-structures and elements of H1(E) we need to forget a
little bit about the category DD(U , E, J) previously constructed . To do this we
construct a new category DD′(U , E, J) whose objects are pairs (aij , ϕi) where (ϕi :
E|Ui → On|Ui) is a GLn-structure on E and (aij , ϕij) is a ALn-cocycle (here we
used the canonical isomorphism ALn ∼= Gn

a o GLn) and morphisms between these
guys will again be elements of C0(ALn) where we regard (ai, Bi) as a morphisms
(aij , ϕi)→ (a′ij , ϕ

′
i) where

a′ij = ai +Biaij − ϕijB−1
j aj ,

ϕ′i = Bi · ϕi.
The above discussion can be summarized by stating that there are a series of

functors encoding cohomology of group-torsor pairs in categories, each with de-
creasing complexity:

DD(U , E, J)→ DD′(U , E, J)→ Z1(U ,Gn
a o GLn).

The intermediate category has the following property:

Lemma 6.4. The map Υ : DD′(U , E, J) → Z1(U , E) defined by Υ(aij , ϕi) =
(ϕi(aij)) sends isomorphisms to isomorphisms and is essentially surjective.

Proof. We first check how Υ behaves under morphisms (modification by cobound-
aries). To do this we factor a coboundary (ai, bi) as (ai, 1)(0, bi) and look at the
action of the boundaries (1, bi) and (ai, 1) separately. We claim that the action
under (1, bi) leaves the map fixed and the action of (1, bi) modifies the image by a
cocycle. We first show that this map sends isomorphisms to isomorphisms.

To show essential surjectivity, we need to show that every element of the target is
isomorphic to some image. A computation with cocycles shows that Z1(U ,ALr)(ϕij) →
Z1(U , E) given by (aij , ϕij) 7→ ϕ−1

i (aij) is a bijection — here, Z1(U ,ALr)(ϕij) de-

notes the inverse image of the cocycle (ϕij) ∈ Z1(U ,GLn) in Z1(U ,ALn) where
the map is the natural one induced by the quotient ALn ∼= On o GLn → GLn.
We also know that the map Z1(U ,ALr)(ϕij) → DD′(U , E, J) given by (sij) 7→
(ϕ−1
i (sij), ϕij) is essentially surjective (since every trivialization can be modified to

a “standard one”). �

6.2. Geometry of group cocycles. This section should be viewed as giving a
geometric interpretation of Theorem 1.7.

Fix an F -fiber bundle π : J → X with G-structure Σ. We can say more about
the reductions of the structure group in the following special situation:

• There exists a linear right action of G on some abelian group A and a right
group cocycle τ : G→ A such that G′ = ker(τ).

Given the extra condition, we fix some more notation: we let G = G be the quotient
through which the action of G on A factors and let Φτ : G→ Ḡn A be the group
homomorphism associated to τ .

First we give a remark in elementary group theory that we will use later

Remark 6.5. Let G′, G′′ ⊂ G be subgroups.
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(1) G′G′′ = G and G′ ∩ G′′ = 1 makes the representation of elements as αβ
with α ∈ G′ and β ∈ G′′ unique. For [αβ] ∈ G′\G we have [αβ] = [β] and
the representative is unique.

(2) Suppose the exact sequence

1 // G′′
j
// G

p
// G′ // 1

is split by s : G′ → G. Using the splitting, identity G′ as a subgroup
G′ ⊂ G. Under these conditions G′ ∩G′′ = 1 and G′G′′ = 1.

(3) Let G,G′ and G′′ be as in 1 or 2. Write ψ uniquely as ψ = αψβψ where
αψ ∈ G′ and βψ ∈ G′′. Let τ : G→ G′′ be the map τ [ψ] = βψ. Let G′ act
on the right of G′′ by conjugation. This map is a group cocycle:

αβα′β′ = αα′βα
′
β′

βα
′

= (α′)−1βα

τ [αβα′β′] = τ [αβ]α
′
τ [α′β′]

(4) Let G,G′ and G′′ be as in 2. Consider G′ nG′′ with the rule:

(α, β)(α′, β′) = (αα′, βα
′
β′).

The map G→ G′′ oG′ given by

αβ 7→ (α, β)

is an isomorphism (the map is injective and surjective and a group homo-
morphism). Observe that this map is just

ψ 7→ (α, τ [ψ]).

Lemma 6.6. Suppose G′, G′′ ⊂ G and G′G′′ = G with G′ ∩ G′′ = 1. Write
ψ = αψβψ and consider the cocycle τ : G → G′′ given by ψ 7→ βψ. Suppose G′′ is
a normal subgroup.

(1) The morphism of S-schemes ρτ : G′′ ×G→ G′′ defined by

β ?τ ψ = βψ ∗ τ [g],

is a right action.
(2) G′\G ∼= (G′′, ?τ ) as right G-sets.

Proof. (1) We have

a ? (g1g2) = ag1g2 + τ [g1g2]

= ag1g2 + τ [g1]g2 + τ [g2]

= (ag1 + τ [g1])g2 + τ [g2]

= (a ? g1) ? g2.

(2) The map τ : G → (G′′, ?) defined by ψ = αψβψ 7→ βψ is a morphism of
right G-sets. First we establish a morphism: The map τ factors τ̄ : G′\G→
(G′′, ?) since G′ = ker(τ). The map τ̄ is a morphism of right G-sets. The
map τ̄ is a bijection and the inverse map (G′′, ?)→ G′\G defined by

β 7→ [β] ∈ G′\G
defines an inverse which shows the map is an isomorphism.

G′\G 3 [ϕ] = [αϕβϕ] = [βϕ]
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[ϕ] · ψ = [βϕαψβψ]

= [β
αψ
ϕ ∗ βψ]

�

Often, there exists an isomorphism β : G′\G ∼= (A, ρτ ) as right G-spaces.

Example 6.7. Let G = A2,G′ = AL1,R1
, G′′ = {T + pc2T 2} ∼= A = pGa,R1

. We
have G = G′G′′ with G′′ normal in G.

Fix the following notation:

(pc)α+βT+γcT 2

= pcβ

τ2(a+ bT + pcT 2) = p
c

b

(pc) ? (α+ βT + pγT 2) = (pc)α+βT+pγT 2

+ τ2[α+ βT + pγT 2]

= p(cβ +
γ

β
)

These groups satisfy the conditions of Lemma 6.6 and hence we will be able to show
that G′\G ∼= (G′′, ?) as right G-spaces. We perform some of the computations in
Lemma 6.6 to provide semantics.

• We first show that [a+bT+pc2] = [T+p cbT
2]. To see this let f−1(T ) = a+bT

and observe that

ψ0(T ) := a+ bT + pcT 2 ∼ f(T ) ◦ (f−1(T ) + pcT 2)

= T +
1

(f−1)′(T )
· pcT 2

= T + p
c

b
T 2

= T + pτ2[ψ0]T 2.

Note that such a representative is necessarily unique since G′ ∩G′′ = 1G.
• We will show that the action of ψ = α + βT + pγT 2 ∈ G on [T + pcT 2] ∈

(G′\G) is given by

[T + pcT 2] ◦ (α+ βT + pγT 2) = [T + p

(
βc+

γ

β

)
T 2].

Proof. The identity:

(T + pcT 2) ◦ (α+ βT + pγT 2) = (α+ pcα2) + (β + 2pcβα)T + p(γ + cβ2)T 2,

plus the previous bullet. �

Note that c 7→ βc+ γ
β is independent of α and only depends on β modulo

p. It is actually the same thing as c ? ψ
• The map τ2 is the same thing as finding a representative for G′\G coming

from {T + pcT 2} ⊂ A2.

Definition 6.8. . Fix an F -fiber bundle π : J → X with G-structure Σ. Associate
to π a Lax functor

MX(Σ, G′) : (SchS)op → Grpd
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defined for each T ∈ SchS by

(6.2) MX(Σ, G′)(T ) = { (Σ′T , ϕ) : Σ′T ∈ BXT (G′T ) , ϕT : GT ×G
′
T Σ′T → ΣT }.

The objects of this category of Frame bundles and morphisms are morphisms of
G′-torsors (ignoring the reduction map ϕ).

Observe that MX(Σ, G′) takes values in groupoids. We will show that under
our special circumstances our functor is representable.

Theorem 6.9. Fix an F -fiber bundle π : J → X with G-structure Σ. Let A be an
abelian sheaf with a right action of G. Let τ : G → A be a cocycle for the right
action. Suppose that (G′\G) ∼= (A, ?τ ) as right G-sets.10 Suppose that the actions
factor through G.

Let ξ = cl(Σ) ∈ H1(X,G). Let ξ ∈ H1(X, Ḡ) be the image of ξ under G → Ḡ.
Let A be a twisted form of A associated to ξ.

(1) Let Q = G′\Σ. The (G′\G)-bundle q : Q→ X has the structure of a torsor
under A.

(2) The cohomology class associated to the A-torsor structure on q : Q→ X is
an obstruction to π : J → X having a reduction to structure group G′.

(3) The lax functor MX(Σ, G′) is represented by an algebraic stack over S.

Proof. (1) The bundle map q : Q→ X naturally has the structure of a (G′\G)-
fiber bundle with a G-structure on the (G′\G)-fibers induced from the right
multiplication G-structure π : Σ→ X.

The existence of the isomorphism of G-sets τ̄ : (G′\G)→ (A, ?τ ) essen-
tially proves the theorem (see Lemma 6.6, part 6.2). We will now fill out
some details:

First some setup: let (Ui → X) be a trivializing cover for π : P → X.
Let ψi : ρ−1(Ui)→ Ui× (G′\G) define a G-compatible (G′\G)-atlas (where
the G-action of the transitions is induced from the G-torsor structure on
Σ→ X). To get A-local trivializations define ψi : ρ−1(Ui)→ Ui ×A by

ψi = τ̄ ◦ ψi.
The transition maps for the A-structure are given by ψij = (∗ 7→ ∗?τ gji) =

(∗ 7→ ∗ ?0 (gji, τ(gji))) where we used ?0 : A× (Gn A)→ A to denote the

action x ?0 (ḡ, α) = xḡ +α. 11 This shows how the trivializations ψi induce
a (GnA)-structure.

The existence of the torsor structures on bundles with semi-direct prod-
uct transition maps follows from general principals. Since it doesn’t hurt
to repeat explanations we give it again here: Let A → X be a twisted
form of A with trivializations ϕi : AUi → AUi such that ϕij = Rgji where

R : A × G → A is the prescribed right action of G on A in the statement
of the theorem. 12 As the transition maps respect the group structure on
A, the twisted form A has the structure of an abelian group scheme. It is
the twisted form of A classified by [Rgji ] ∈ H1(X,Aut(A)).

10 c.f. Lemma 6.6 for conditions
11 Observe the factorization x ?τ g = x ?0 (ḡ, τ [g]).

12 Observe that g 7→ Rg−1 defines group homomorphism: G→ Aut(A)



40 TAYLOR DUPUY

We show now that Q is a torsor under A. We define the torsor structure
by a division map: for each open set U with trivialization ψ : ρ−1(U) →
U ×A define d : Q×Q→ A by

d(s1, s2) := ψ−1(ψ(s1)− ψ(s2)),

for s1, s2 ∈ Γ(U,Q). Here, the addition rule of A is used on the right hand
side and, because the transition maps are affine linear, d(s1, s2) gives a
well-defined section of A. Furthermore, because of the sheaf property, the
map d is well-defined for all open subsets.

(2) Let cl(Q) = ξ ∈ H1(X,A) be the class associated to the A-torsor structure
on Q. Lemma 5.8 part (4) says that reductions are equivalent to global
sections of Q modulo equivalence. We know that ξ = 0 if and only if
Γ(X,Q) is not empty if and only if Q ∼= A as left A-torsors. Hence Γ(X,Q)
is naturally a torsor under A(X).

(3) If we suppose that Γ(X,Q) is nonempty. The section s gives an isomorphism
Γ(X,Q) → A(X) of left A(X) sets given by s′ 7→ s′ − s. By Lemma 5.8
part (4) we have a bijection

Aut(P )\A(X)→MX(Σ, G′)(X)/ ∼
[s] 7→ [s∗ΣQ]

Globalizing this construction gives M ∼= Aut(P )\A as sheaves on X.
Since Aut(P ) is represented by sections of the adjoint bundle, the quotient
Aut(P )\A is a group scheme quotient and hence exists as an algebraic
stack.

�

Remark 6.10. This remark is documenting a failed method for constructingMX(Σ, G′).
The author attempted the following to show the space of reductions was represented
by an algebraic stack; we list the procedure in steps and explain its failure following
the initial listing of steps:

(1) (take a quotient) Show that the quotient Q := G′\P is a represented by a
an algebraic space over X.

(2) (construct a Hom-stack) Show that The hom-stack H := HomX(X,Q) is
represented by a Deligne-Mumford stack.

(3) (construct a group scheme of automorphisms) and show there exists a nat-
ural group scheme Γ associated to gauge group Aut(P ) and a left action
Γ×H → H.

(4) (take a quotient of a stack) Show that the quotient Γ\S exists as an alge-
braic stack and take it as our definition of MX(Σ, G′).

If these steps were all true then this would give a presentation of M.

(1) (Quotienting by a group scheme is ok)
(2) (Constructing a Hom-stack is NOT OK ) To apply [Nit05, pg 31 or Thm

6.6] or [Ols06, Theorem 1.1] for representability of HomX(X,Q) one needs
Q → X to be proper. In one of our application S = X and Q = A2\Σ1

and the morphism Q→ X is often affine and not proper.
(3) (Converting to group scheme action is ok)
(4) (Quotienting an algebraic stack is ok) For the definition of a group action

on groupoids see [Rom05, Definition 1.3]. By [Rom05, Theorem 4.1] If M is
an algebraic stack which is finitely presented, G a flat group scheme which
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is separated and finitely presented then M/G is an algebraic stack and
q : M → M/G is a G-torsor (this implies q is representable, q is separated
and q is finitely presented)

6.3. The moduli of torsor structures of lifts of the Frobenius modulo p3.
In this example we work out Theorem 6.9 for the principal bundle of the first p-jet
space of a curve modulo p2.

Theorem 6.11. Let X/R be a smooth projective curve of genus g and let p > 3g−3.
Let Σ1 be the canonical A2-structure on J1

p (X)1. The set of reductions to an AL1,R1
-

structure is in bijections with a quotient of a (2p−1)(g−1) dimensional vector space.

Remark 6.12. We were hoping that the above result would allow us to compute the
dimension of MX1(Σ1,AL1,R1) but this is not how stacky dimensions work.

The dimensions of local cohomology groups in the moduli problem have nothing
to do with stack dimensions. This can be seen for example in the difference between
the dimension of the Picard stack [C/Gm] (which is zero dimensional) and the
Picard scheme which is g dimension if C is a curve of genus g.

We thank David Zureick-Brown for pointing this out to us.

Proof. We first fix some notation. Let G = A2, G′ = AL1,R1
and G′′ = {T +

pcT 2} ⊂ A2. Observe that G′′ ∼= A := pGa,R1
. Let Q = (G′\Σ1). Let ρ be defined

by the diagram:

Σ1

q

%%

π

��

(G′\Σ1) = Q

ρ
yy

X

The assertions beyond A = Ω⊗pX0
follow from elementary Riemann-Roch together

with Lemma 5.8 part 4. We work on showing the torsor structure explicitly. The
obstruction to being the trivial torsor vanishes and hence Γ(X,Q) is parametrized
by A(X). We also have dimR0

Γ(X,Q) = dimR0
A(X) = (2p− 1)(g − 1).

We will first show that ρ : Q → X has the structure of a torsor under a line
bundle. We will then identify what the line bundle is.

Let (Ui → X1)i∈I be a trivializing atlas for the A2-bundle of frames Σ1 with
trivializations ξi : ΣUi → (A2)Ui . From the definition of the frame bundle we know
that

ξi(ψ) := ψ ◦ ψ−1
i

where ψi ∈ Σ1(Ui) are trivializations of J1
p (X)1 with its given A2-structure. Using

the formula for ξi we may compute the transition maps: For ϕ ∈ A2(Uij) we have

ξij(ϕ) = ξi ◦ ξ−1
j (ϕ) = ξi(ϕ ◦ ψj) = ϕ ◦ ψj ◦ ψ−1

i = Rψji(ϕ).
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Here, R denotes the action of right multiplication. After quotienting by G′ =
AL1,R1 we obtain the factorization

Σ1

q

%%

π

��

G′\Σ1 = Q

ρ
yy

X

.

The trivializations (ξi) of the left A2-torsor Σ1 induce A2-compatible trivializations
of the (AL1,R1\A2)-fiber bundle (and hence an A2-structure) since the quotient is

a universal categorical quotient. Let us denote the induced trivializations by ξi.
The transition maps ξij are also given by right multiplication by ψji:

ξ
′
ij = Rψji : (AL1,R1

\A2)Uij → (AL1,R1
\A2)Uij .

We now come to the torsor structure. Let τ : A2 → pGa,R1
be the right group

cocycle defined by

τ([a+ bT + pcT 2]) 7→ p
c

b
.

By Lemma 6.6 (2) τ : A2 → pGa,R1 induces an isomorphism right A2-spaces
τ̄ : (AL1,R1

\A2) → (pGa,R1
, ?τ ). The isomorphism of right A2-spaces induces an

isomorphism of schemes

Q ∼= (AL1,R1
\A2)×A2 Σ1

τ̄×A2Σ1 // (pGa,R1
, ?τ )×A2 Σ1 .

The isomorphism τ̄ ×A2 Σ1 gives Q the structure of a pGa,R1
-bundle with an A2-

structure.
The pGa,R1

-atlas on Q is given by ξ̄′i := τ̄ ◦ ξ̄i. The transition maps ξ̄′ij :
Uij × pGa,R1 → Uij × pGa,R1 are given by a right action: for x ∈ pGa,R1(Uij) we
have

ξ̄′ij(x) = x ? ψji = xψji + τ [ψji].

Since ξ̄′ij is a cocycle, and ? is an AL1-action we know that Q is a torsor.

It remains to identify A. Let ψij(T ) = aij + bijT + pcijT
2. Recall that [bij ] =

cl(F ∗TX0
) ∈ H1(X0,OX0

) The formula

ξ̄′ij(x) = xψji + τ2[ψji] = xbji +
cji
bji

implies that A ∼= (F ∗TX0)∨. Since the global sections are parametrized by H0(A)
and the set of reductions is a quotient of A we the dimension of the set of reductions
is bounded by the dimension of H0(A). �
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