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Object Description Interpr®ation
Object Description Interpretation
Il =m(Z,2) Given :
MT monotheta environment given
p(() char(Og/my) the unique prime [ such that for all other - ; )
o ’ . . . (& = (1[\' aiven
primes I’ # [ we have dim; (I1) — dimy (II) > —
0. M = 0% given
d(() : Q,,] dimpqyy (IT) — dimy(IT) for any prime [ # 11 = m(Z), Z hyperbolic curve given
p(IT) / o i(l ), inertia subgroup of m(Zs) given
A(ll) m (Zy) as in Table l'_)l or A(I) = N{II, C syncl : A(M) = A(G) Brauer synchronization invg oH2(G,sync ) = inv 57 e
IT clopen ‘“”'ln‘ln(”? - (lilll:(.”n) = & syncp : A(IT) = A(G) bilinear synchronization The unique element of Hom(A(IT), A(G))N
d(ID)[IT : Ty]} where [ is any prime not P where P is the positive rational struc-
equal to p(IT). ture. [MocO7al
G(I1) G as in Table[5 synr','  AIT) = 1 cuspidal synchronization rl.i,‘“(i(l,): This is the map on the sec-
D; for I € Cusp(II) * Ds,., Iz, inertial group of a cusp Nnl(l) n.n(l DA X THR ek BotleuCe: FRC:
ciated to the exact sequence 1 — I —
A(ll) (m(Z%)) A/J(II) where J(II) € A(Il) smallest A“(X) = A(X) — 1. One com-
open normal containing / for I € Cusp(II) putes H°(A(X),H'(1.1)) = Hom(I,I)
: ~ : Jap— pp— ~ o and H2(A(IT), H°(1. 1)) = Hom(A(IT), I).
A(IT) Z(1) as G'g-module. H*(A,Z)" = Hom(H*(A(Il),Z),7Z)) ’ - ( ‘ s o UHED,
— - : : _ - synciy : A(MT)*™" — A(MT)™ | monotheta cyclotomic synchronization s — g*a™
1| (SBT) Z approximation by elements of NF(II)
[.\[()(‘()-")3 Lemma 3.]-“\.] Table 4: A table of cyclotomic synchronizations.

6S

div(O*(I1)) = div(O(Z2)*) ker(a) N deg™'(0) where a: Z®Cuwp() _,
HY(G(IT), A (IT)#) given by
zlé(‘ur«p(”)nll = Zle(‘mpun ”l"'l‘;):' See
prose at beginning of this appendix.

O*(I) ~ O*(Z) p~1(div(O(I1)%))

O*(IT\ S) (SBT) & O*(Z\9) O*(m (IT\ S))

K*(II) (SBT) & x(Z)" lim 0% (I1 \ S)

k*(IT) e K O*(10)

K" (1) (SBT) ~ k((Zo)x) {(neK*(I): 3ne N,3D € Mixe 7"|p =
1} see [MocO8] 1.8.i]

k, (IT) (SBT) ~ Ky image of Ki“™”* and |II|yr under evalua-

tion; compose with synchronization. [MocOS]
1.8.iil

ord; : K*(Il) — Z,
.S' € ()I)‘"ll\l(ll) (SBT)

I € Cusp(S) |ord, : k(Z)* — Z,

K= |Z',|

ksl € HY(1,A(IT))

Div(|M|xg) (SBT)

= Di\"((7n)ﬁ7)

7 S| Z|NF
-

(SBT)

H(On(D)) D € Div(|ll|xe) [ HYZ,02(D) = {f € x((Z)g)"

div(f)|z + D|z > 0} for D € Div((Zy)g)

{f € K§*™(II) : div(f) + D > 0} here D €
Div(|Z|x¥)

k_“(”)l\’mn (SB’]')

= Ky as a field

Uchida trick /fundamental theorem of projec-
tive geometry (see §77)

K§(¥= (SBT)

= k(Zg,) as afield

K‘g;wnu(”)l\'um = K:;)tm_“"‘ (”)l\'um U {“} illl(l the
field structure is induced by the injection into

D, ne K (@)

Gl

A\
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Object Description Interprefation

G = (7 as topological groups | given

p(G) char(k) | = p(G)<=1 prime and log,(#GP/*or [[Gab/tors) > 2
£(G) [k : T log,, ) (1 + #((G*/1o)p(@)))

d(G) (K : Q) logy, () (#G™/*™ /IG*P/**™) — 1 (for any | # p(G))
e((7) Inertia degree d(G)/f(G)

Lim Ga el

("uh

: ' " X “xXn
lim lim K7 /K,

-~

“_I_lg(, (,k' (Gp). this limit varies over open subgroups and
the transition maps are given by the transfer maps

1, (G) =~ 1, (K) as G -modules n-torsion of k” (G)

AG) = 2(]) as (¢ -modules I{i_Lnlz,,((.')

0*(G) SO ker(G — G, (G))

O (G) = (’)%,. Illl;(:u . O0%(G)

ki, (G) o Ky, as topological | O*(G) @z Q (same as monoid perfection)

abelian groups
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Object Description Interpretation
G = (i as topological groups | given
plG) char(k) | = p(G)<=>l prime and log,(#G*P/*o™ /IG*P/tors) > 2
.| (@) [k : Fy log, ) (1 + #((G*/to)P(G)))
(l((l" ‘l\ i :lll'l'l l(,(_)\') e | :;("-if: tors ‘,('v.llr Iul~) l (l()l any / / l)l(r'll‘l
e((Y) Inertia degree d(G)/f(G)
k* (G)LCF1 lim K™ /K" G*®
k (G)CF1 li_ng Ligl K /K™" li_n!(_ (_k' ((Gp). this limit varies over open subgroups and
the transition maps are given by the transfer maps
i, (G) =~ 1, (K) as G -modules n-torsion of k (G
AG) = 7Z(1) as (¢ -modules l(il_n/:,‘((,'v
()'((r'l N(I)I.\- k('l‘(l' '(;,,J(:‘”
O () > 0L lim . O*(G)
A ey C (s
k. (G) = Ky, as topological [ O*(G) @z Q (same as monoid perfection)
abelian groups
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LECTURES ON THE AX-SCHANUEL CONJECTURE

ZARISKI GEOMETRIES
BENJAMIN BAKKER AND JACOB TSIMERMAN

EHUD HRUSHOVSKI AND BORIS ZILBER

ABSTRACT. Functional transcendence results have in the last decade found a
number of important applications to the algebraic and arithmetic geometry of

1. INTRODUCTION varieties X admitting flat or hyperbolic uniformizations: Pila and Zannier’s
Let k be an algebraically closed field. The set of ordered n-tuples from k is viewe new pI‘OOf of the Manin—-Mumford conjecture, the PTOOf of the André-Oort
as an n-dimensional space: a subset described by the vanishing of a polynomial, « conjecture for Ag, and the generic Shafarevich Conjecture for hypersurfa,ces

a family of polynomials, is called an algebraic set, or a Zariski closed set. Algebrau
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Definition 3.1.

(i) A O-species Gy is a collection of conditions given by a set-theoretic formula
Py(€)

involving an ordered collection € = (&q,..., €, ) of sets &;,..., &, [which we
think of as “indeterminates”]|, for some integer ng > 1; in this situation, we shall
refer to € as a collection of species-data for Gg. If G is a 0-species given by a
set-theoretic formula ®¢(€), then a 0-specimen of S is a specific ordered collection
of ng sets £ = (E1,...,FE,,) in some specific ZFC-model that satisfies ®o(FE). If
E is a O-specimen of a 0-species G, then we shall write £ € G,. If, moreover, it
holds, in any ZFC-model, that the 0-specimens of G, form a set, then we shall refer
to Gy as 0-small.

_ 4 21 - _ __ £ _____ _1_ _ A~ A

(ii) Let & be a O-species. Then a 1-species &1 acting on Sy is a collection of

(iii) A species G is defined to be a pair consisting of a 0-species &y and a 1-
species G acting on &y. Fix a species © = (G, S1). Let ¢ € {0,1}. Then we shall
refer to an i-specimen of &, as an 2-specimen of G. We shall refer to a 0-specimen
(respectively, 1-specimen) of & as a species-object (respectively, a species-morphism)
of G. We shall say that G is i-small it G; is i-small. We shall refer to a species-
morphism F': E — E’ as a species-isomorphism if there exists a species-morphism
F’ : E' — FE such that the composites F'o F’, F' oI are identity species-morphisms;
in this situation, we shall say that F, E' are species-isomorphic. [Thus, one veri-
fies immediately that composites of species-isomorphisms are species-isomorphisms.|
We shall refer to a species-isomorphism whose domain and codomain are equal as
a species-automorphism. We shall refer to as model-free |[cf. Remark 3.1.1 below]
an i-specimen of G equipped with a description via a set-theoretic formula that
is “endependent of the ZFC-model in which it is given” in the sense that for any
pair of universes V;, V5 of some ZFC-model such that V; € V5, the set-theoretic
formula determines the same i-specimen of &, whether interpreted relative to the

ZFC-model determined by V; or the ZFC-model determined by V5.

§:¢ — ¢ If in some ZFC-model, E, E' € &y, and F is a specific or-
dered collection of n; sets that satisfies the condition ®,(FE, E’, F'), then
we shall refer to the data (E,E’, F) as a 1-specimen of &, and write
(E, B’ F) € &1, alternatively, we shall denote a 1-specimen (F, E’, F') via
the notation F' : F — E’ and refer to E (respectively, E') as the domain
(respectively, codomain) of F': E — E'.

(b) @11 is a set-theoretic formula

(I)lol (QE, QE/? 6//7 37 3/7 SN)

involving three collections of species-data § : ¢ — ¢, ' : ¢ — ¢&”, F" :
¢ — ¢ for G, [i.e., the conditions ®y(€&); Po(&"); Oo(E"); Py (€E, ¢, F);
oy (¢, " F); P(¢, ¢, F") hold]; in this situation, we shall refer to §” as
a composite of § with §' and write §” = §’' o§ [which is, a priori, an abuse
of notation, since there may exist many composites of § with §" — cf. (c)

below|; we shall use similar terminology and notation for 1-specimens in
specific ZFC-models.

c) Given a pair of 1-specimens F': E — E', F' : E' — E" of &1 in some

ZFC-model, there exists a unique composite F" : E — E" of F with F’
in the given ZFC-model.

1) Composition of 1-specimens F' : £ — E', F' : B/ — E" F" . E" — E"

of G in a ZFC-model is associative.

e) For any 0-specimen E of &g in a ZFC-model, there exists a [necessarily

unique| 1-specimen F' : ' — FE of & [in the given ZFC-model] — which
we shall refer to as the identity 1-specimen idg of E — such that for any
l-specimens F' : B' — E, F" : E — E" of &, [in the given ZFC-model]
we have Fo F' =F' . F"o F = F".



Definition 3.3. Let 6 = (6(,61); 6 = (G, S,) be species.

(i) A mutation M : & ~» & is defined to be a collection of set-theoretic
formulas Wy, W, satisfying the following properties:

(a) g is a set-theoretic formula
\IIO (QE) g)

involving a collection of species-data € for G, and a collection of species-
data € for G,; in this situation, we shall write 9(€&) for & Moreover, if,
in some ZFC-model, E € G, then we require that there exist a unique
E € G, such that Wy (FE, E) holds; in this situation, we shall write 9(F)
for F.

(b) Wy is a set-theoretic formula

\P1(€7 6,7 37 ﬁ)

INTER-UNIVERSAL TEICHMULLER THEORY IV

involving a collection of species-data § : € — ¢ for &; and a collection
of species-data § : € — & for &;, where € = M(E), & = M(¢'); in
this situation, we shall write 9(F) for §. Moreover, if, in some ZFC-
model, (F : F — E’) € &4, then we require that there exist a unique
(F : E — E') € &, such that ¥o(E, E’, F,F) holds; in this situation,
we shall write 9U(F) for F. Finally, we require that the assignment F' +—
M (F') be compatible with composites and map identity species-morphisms
of G to identity species-morphisms of &. In particular, if one fixes a ZFC-
model, then 91 determines a functor from the category determined by &

in the given ZFC-model to the category determined by & in the given
ZFC-model.

73

(iv) Let T be an oriented graph, i.e., a graph I', which we shall refer to as the

underlying graph of f, equipped with the additional data of a total ordering, for
each edge e of I, on the set |of cardinality 2] of branches of e [cf., e.g., [AbsToplII],

§0]. Then we define a mutation-history $ = (T, &*,M*) findezed by T] to be a
collection of data as follows:

(a) for each vertex v of f, a species ©Y;

(b) for each edge e of T, running from a vertex v to a vertex vs, a mutation

Me : GV~ B2,

In this situation, we shall refer to the vertices, edges, and branches of T as vertices,
edges, and branches of §). Thus, the notion of a “mutation-history” may be thought

of as a species-theoretic version of the notion of a “diagram of categories” given in
[AbsTopllIl], Definition 3.5, (i).

(ii) Let M, M : & ~» & be mutations. Then a morphism of mutations
3: M — N is defined to be a set-theoretic formula = satisfying the following
properties:

(a) = is a set-theoretic formula

=(€, )

involving a collection of species-data € for Gy and a collection of species-
data § : MM(&) — M'(€) for &1; in this situation, we shall write 3(€) for
S§. Moreover, if, in some ZFC-model, E € Sy, then we require that there
exist a unique F© € G, such that Z(F, F) holds; in this situation, we shall
write 3(F) for F.

(b) Suppose, in some ZFC-model, that F': F; — Fs is a species-morphism
of &. Then one has an equality of composite species-morphisms 2V (F’) o
3(E1) = 3(F) o M(F) : M(E,) — M (F2). In particular, if one fixes a
ZFC-model, then a morphism of mutations 9 — 9" determines a natural
transformation between the functors determined by 9, 9’ in the ZFC-
model — cf. (i).
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THE GEOMETRY OF FROBENIOIDS I:
THE GENERAL THEORY

SHINICHI MOCHIZUKI

June 2008

ABSTRACT. We develop the theory of Frobenioids, which may be regarded as a
category-theoretic abstraction of the theory of divisors and line bundles on models
of finite separable extensions of a given function field or number field. This sort of
abstraction is analogous to the role of Galois categories in Galois theory or monoids
in the geometry of log schemes. This abstract category-theoretic framework preserves
many of the important features of the classical theory of divisors and line bundles
on models of finite separable extensions of a function field or number field such as
the global degree of an arithmetic line bundle over a number field, but also exhibits
interesting new phenomena, such as a “Frobenius endomorphism” of the Frobenioid
associated to a number field.

Introduction

60. N
61. D

otations and Conventions
efinitions and First Properties

32. Frobenius Functors

63. C
64, C

ategory-theoreticity of the Base and Frobenius Degree
ategory-theoreticity of the Divisor Monoid

§5. Model Frobenioids

86. Some Motivating Examples
Appendix: Slim Exponentiation
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INTER-UNIVERSAL TEICHMULLER THEORY II:
HODGE-ARAKELOV-THEORETIC EVALUATION

SHINICHI MOCHIZUKI

December 2020

ABSTRACT. In the present paper, which is the second in a series of four pa-
pers, we study the Kummer theory surrounding the Hodge-Arakelov-theoretic eval-
uation — i.e., evaluation in the style of the scheme-theoretic Hodge-Arakelov

theory established by the author in previous papers — of the [reciprocal of the -
th root of the] theta function at [-torsion points [strictly speaking, shifted by a
suitable 2-torsion point], for [ > 5 a prime number. In the first paper of the series, we
studied “miniature models of conventional scheme theory”, which we referred to as
O*eU NF_-Hodge theaters, that were associated to certain data, called initial ©-data,
that includes an elliptic curve Er over a number field F', together with a prime num-
ber | > 5. The underlying ©-Hodge theaters of these ©*¢INF-Hodge theaters were
glued to one another by means of “©O-links”, that identify the [reciprocal of the [-th
root of the] theta function at primes of bad reduction of Er in one ©=*elINF-Hodge
theater with [2[-th roots of] the g-parameter at primes of bad reduction of EFr in an-
other @ieHNF-Hodge theater. The theory developed in the present paper allows one

. . . . . . X
to construct certain new versions of this “©-link”. One such new version is the anﬁﬁ-



Example 1.7. Radial and Coric Data I: Generalities.

(i) In the following discussion, we would like to consider a certain “type of
mathematical data”, which we shall refer to as radial data. This notion of a “type
of mathematical data” may be formalized — cf. [IUTchIV]|, §3, for more details.
From the point of view of the present discussion, one may think of a “type of
mathematical data” as the input or output data of a “functorial algorithm” [cf. the
discussion of [IUTchl|, Remark 3.2.1]. At a more concrete level, we shall assume
that this “type of mathematical data” gives rise to a category

R

— 1.e., each of whose objects is a specific collection of radial data, and each of whose
morphisms is an isomorphism. In the following discussion, we shall also consider
another “type of mathematical data”, which we shall refer to as coric data. Write

C

for the category obtained by considering specific collections of coric data and iso-
morphisms of collections of coric data. In addition, we shall assume that we are
given a functorial algorithm — which we shall refer to as radial — whose input data
consists of a collection of radial data, and whose output data consists of a collection
of coric data. Thus, this functorial algorithm gives rise to a functor ® : R — C. In
the following discussion, we shall assume that this functor is essentially surjective.
We shall refer to the category R and the functor ® as radial and to the category
C as coric. Finally, it I is some nonempty index set, then we shall often consider
collections

{®; : Ri = Clicr

of copies of ® and R, such that the various copies of ® have the same codomain C
— cf. Fig. 1.1 below. Thus, one may think of each R; as the category of radial
data equipped with a label v € I, and isomorphisms of such data.

(ii) We shall refer to a triple (R,C,® : R — C) |or to the triple consisting of





















