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Abstract

Notes from a talk given in Sevilla in 2012. These are incomplete and
probably contain errors. If someone find errors or wants to suggest a re-
organization of this material please email me: taylor.dupuy@gmail.com.
Also email me if you want to talk about p-adic Harmonic analysis. The
basic idea is that anything you can do in “dyadic harmonic analysis” you
can also do with a complete distrete valuation field. This can also be
viewed as a friendly introduction to p-adic numbers for analysts – Taylor
Dupuy (Summer 2012)

0.1

An absolute value on a domain R is a map | − | : R→ R≥0 such that

1. |x| = 0 ⇐⇒ x = 0

2. |xy| = |x| · |y|

3. |x+ y| ≤ |x|+ |y|

We will be focusing on non-archimedean or ultra metric absolute values,
these are absolute values which satisfy the stronger triangle inequality:

|x+ y| ≤ max{|x|, |y|}. (1)

Remark 0.1. • The are called non-archimedean because they destroy the
ordering of the fields. We will see this later.

• Every absolute value extends uniquely to its field of fractions.

0.2

For every prime number p we can define a norm | − |p on Z which is distinct
from usual norm. For example if p = 5 we will have

|14|5 = 1, |25|5 = 1
52 , | − 10|5 =

1

5
,

The idea is that the more divisible by 5 the number is the smaller the 5-adic
absolute value. Here is the general setup: For any prime p and any natural
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number n we can write n = pen′ where p - n′. We then define the p-adic
absolute value by

|pen′| = p−e. (2)

The exponent e is called the order or valuation of n at p as is sometimes
denoted by νp(n) or ordp(n). We can extend the absolute value to the rational
numbers as we stated before. Here are some examples:

|1/14|5 = 1, |3/25|5 = 52, | 1

10
|5 = 5.

0.3

With every absolute value there comes a metric. The p-adic metric on Q is

d(x, y) = |x− y|p

and if we complete Q with respect to this metric a complete vector space Qp

called the p-adic numbers.
How do we write down p-adic numbers? We can represent any p-adic integer

as a power series in p

a =

∞∑
j>−N

ajp
j (3)

where aj ∈ {0, 1, . . . , p − 1}. This is very similar to a decimal, binary or n-ary
exansion of a real number only this times the decimal point is going the other
way! For example

n∑
j=0

3j = . . . 111.0

Notice that even negative numbers are represented as power series as in 3

1

1− p
= 1 + p+ p2 + · · ·

which means

−1 =
p− 1

1− p
= (p− 1) + (p− 1)p+ (p− 1)p2 + · · · .

Proposition 0.2. The p-adic norm on the p-adic numbers is non-archimedean.

0.4

The p-adic numbers have some properties which may be peculiar to people who
haven’t worked with them before.

• Balls have no centers.

• The unit ball is a subring.

•
∑

j≥0 aj converges in Qp if and only if |aj |p → 0 as j →∞.
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0.4.1 Balls Have No Centers

This is actually just a property of any non-archimedean (or ultrametric)
metric spaces. These are metric which satisfy the stronger triangle inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.

It is easy to check that the metric induced by the p-adic norm is ultrametric.
The 3-adic topology looks something like this:

Proposition 0.3. Suppose that (X, d) is a non-archimedean metric space. Then
for all x, y and r

y ∈ Br(x) =⇒ Br(x) = Br(y).

Proof. We will show that Br(x) ⊂ Br(y). If y ∈ Br(x) then d(x, y) ≤ r. For all
z ∈ Br(x) we have

d(y, z) ≤ max{d(x, y), d(x, z)} < r,

which implies that z ∈ Br(y) and hence Br(x) ⊂ Br(y). The reverse inclusion
follows from symmetry.

any Ultra metric space has a property of dyadic intevals that you are prob-
ably familiar with:

Proposition 0.4. Let (X, d) be an Ultrametric space. For all balls B and B′

we have
B ∩B′ = ∅ or B ⊂ B′ = ∅ or B′ ⊂ B.

Proof. Let B = Br(x) and B′ = Br′(x
′). Without loss of generality we can

assume that r′ ≤ r. Clearly we have Br′(x
′) ⊂ Br(x). If Br(x) ∩ Br(x′) is not

empty for any element y in the intersection we have

Br(x) = Br(y) = Br(x′)

by the previous proposition. In the case that the intersection is nonempty we
have B′ ⊂ B. Otherwise the intersection is empty.

Remark 0.5. We will see shortly that the dyadic intervals used in dyadic har-
monic analysis actually come from an non-archimedean norm placed on the set
of real numbers.

0.4.2 The Unit Ball is a Subring

The unit ball in the p-adics

B1(0) = {x ∈ Qp : |x|p ≤ 1} := Zp

is sometimes called the ring of p-adic integers and is denoted by Zp.

Proposition 0.6. Let F be a complete field with a non-archimedean valuation

1. The closed unit ball in F is a subring.

2. The open unitball in F is a maximal ideal in the subring.

Proof. |x+ y|F ≤ max{|x|F , |y|F }
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0.5 The Dyadic Reals
1 We want to explain the following claim

Proposition 0.7. The dyadic intervals on the set R are balls on the “approxi-
mate reals” R̃ = (R, +̃, ∗̃, | · |) which has an ultrametric topology.

The approximate reals are the completion of the approximate integers. The
approximate integers are essentially the integers where we drop don’t carry. In
order to explain Z̃Z we need to explain

• The addition

• The multiplication

• The norm

Every number can be written in binary

n =

N∑
j=0

bj2
−j

where bj ∈ {0, 1}. For example

10 = 0 · 1 + 1 · 2 + 0 · 22 + 1 · 23.

When we add two numbers we can usually using rounding:

5 + 11 = 1012 + 11 = 10112 = 100001 = 16

If we forget about the rounding get a kind of approximate addition

5 + 11 = 1012+̃10112 = 11102 = 14.

The worst thing that happens here is n+̃n = 0. What we really have done is
identified the binary expansion with elements of the ring of polynomials F2[t]
with R by plugging in t = 2.

5↔ 1 + t2 and 11↔ 1 + t+ t3

Given that, the natural multiplcation n∗̃m should be given by the multiplcation
in the polynomial ring. So for example we have

5∗̃11 = 39.

In general the coefficients for multiplcation are given by

br(n∗̃m) =
∑

i+j=r

bj(n)bi(m).

This explains the addition and the multiplication. It remains to explain the
norms. For every integer n the norm |n| is equal to the number of elements

1The following (awesome) observation was brought to my attention by Terrence Tao’s blog.
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in the abelian group Z/〈n〉. We define a norm similarly for the approximate

integers: if n ∈ F2[t] = Z̃ then we will define

|n|R̃ = #Z̃/〈n〉 = (#F2)deg(n) = 2deg(n).

where deg(n) is the degree of n as a polynomial in F2. Using this definition we
have

|5|R̃ = 4 and |11|R̃ = 8

Remark 0.8. To get a sense of how these are actually “approximate” one could
compute the probabilities by which they vary. Perhaps a relative error is the
best estimate.

As with any normed space we can extend the norm the the field of fractions

Frac(F2[t]) = F2(t) = {f(t)

g(t)
: f, g ∈ F2[t], g 6= 0} := Q̃

and complete with respect to the norm to get

R̃ ∼= F2((1/t)) = {
∞∑

j>>−∞
bjt
−j : bj ∈ F2}.

Note that the degree of each element in this ring is finite. We would also like
to observe that R is, in fact, in bijection with the real numbers (which can be
seen by making the substitution t 7→ 2).2. Now observe that in this topology
that since the norm only depends on the degree we have

|x+ y|R̃ ≤ max{|x|R̃, |y|R̃}.

By the ultrametric properties every x in a unique ball of radius r (which is the
same as the ball of radius of some 2n— the biggest power of 2 smaller than
r). Observe that |x − y|R̃ < 2n means that these numbers only disagree at the
smaller powers of 2. One can immediately see for example that

B2n(0) = [0, 2n] ⊂ R.

0.6

Proposition 0.9. Z2 and B1(0) are homeomorphic (both are homeomorphic to
the Cantor Set).

Lemma 0.10. For a topological space X the following are equivalent

1. X is homeomorphic to the cantor set.

2. X is homeomorphic to
∏

i∈N{0, 1} where we give {0, 1} the discrete topol-
ogy.

3. X is perfect, compact, hausdorff and totally disconnected.

2It is more common in commutative algebra and algebraic geometry to work with (the
isomorphic normed field) F2((t)) and the order of vanishing of t rather than the degree
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0.7

Proposition 0.11. There exists a ring homomorphism from Z2 to R̃.

The main idea of this proposition is the that Z2
∼= W2∞(F2) where Wp∞(R)

is the ring of p-typical Witt Vectors. These consist of sequences (a0, a1, . . .)
to which we make up some addition and multiplication rules to give it a ring
structure

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1 +
ap0 + bp0 − (a0 + a1)p

p
, . . .),

(a0, a1, . . .) ∗ (b0, b1, . . .) = (a0b0, a1b
p
0 + b1a

p
0 + pa1b1, . . .)

we have only given the first two sum and product polynomials which define
the addition and multiplication operations but they continue. We need some
notation. If x = (x0, x1, . . .) the the nth Witt Polynomial is defined by

wn(x) :=

n∑
j=0

pjxp
n−j

j . (4)

The Witt Vectors are given the unique structure such that the map

w(x0, x1, x2, . . .) := (w0(x), w1(x), w2(x), . . .)

is a ring homomorphism. In other words

x+W y = (s0(x, y), s1(x, y), . . .) := s and x ∗W y = (p0(x, y), p1(x, y), . . .) := p

are made so that

(w0(s), w1(s), . . .) = (w0(x) + w0(y), w1(x) + w1(y), . . .)

and
(w0(p), w1(p), . . .) = (p0(x)p0(y), p1(x) + p1(y), . . .).

the Witt polynomials are essentially the unique polynomials you can do this
with. The homomorphism we were talking about is from Z2 to B1(0) ∼= F2[[t]]
comes from equation (4) and is called the Ghost map.

0.8

One can define Calderon-Zygmund operators. Maximal functions and Calderon-
Zygmund decompositions in the same way you do for dyadic harmonic analysis.
See Cristina Pereyra’s notes.
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