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Abstract

These notes are based on Thomas Scanlon’s talks at CUNY during
the summer of 2010. They only go through the first two days. The main
point is that if you know that a certain set is definable and bounded you
can should that the family is uniformly bounded.
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1 Signatures, Languages, Theories and Models

1.1 What is a Signature?

A signature is a tuple σ = (C,F,R, arityF , arityC) consisting of a set of con-
stant symbols C, a set of functions symbols F and a set of relations R along
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with arity functions arityF : F → Z+ and arityR : R → Z+ which tell how
many inputs each function and relation take.

Example 1. Consider the signature for the Language of ordered rings.

C = {0, 1},
F = {+,−, ∗}

R = {≤}.

where arity(+) = arity(∗) = 2,(−)1, and arity(≤) = 2.

Example 2. The signature for the Language of Groups:

Constants = {1}
Relations = ∅

Functions = {inverse, ∗}

Arity of inverse = 2, Arity(*)=2.

Example 3. Language of graphs

Constants = ∅
Functions = ∅

Relations = {e}

with arity(e) = 2. Suppose the proposition θ(v) = [indeg(v) = outdeg(v)]

1.2 What is the Language of a Signature?

From a signature we build up a collection of strings known as the Language of
a signature. The language will of a signature will have no attached meaning
to them. It is just a collection of strings from a family of symbols. To create
this language, We first chose a set of variable symbols {xi : i ∈ N}.

• Next we construct the terms of our signature T (σ) inductively. Initially
we will only have constants and variables being terms. Then we say that
for and f ∈ Fσ and t1, . . . , tarity(f) ∈ T (σ) then f(t1, . . . , farity(f)) ∈ T (σ).

• From our terms we define our formula (again inductively). The base of
our inductive definition of the formulae are the atomic formula. There
are of the form t = s where t, s ∈ T (σ) or of the form R(t1, . . . , tarity(r))

for ti ∈ T (σ) and R ∈ Rσ. The inductive step provides general formula:
Given any two formula P and Q the following strings are also formula:

– !P (not P )

– P ∧Q
– P ∨Q

At this stage the formula we have created can incorperate the xi in them.
These are called Free Variables in a formula. Whenever we have a
formula P = P (c1, . . . , cr, x1, . . . , xs) involving constants ci and variables
xj we can choose to bound any of the variables with quantifiers to get a
new formula:
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– ∃x1,∃x2, . . . ,∃xkP (c1, . . . , cr, x1, . . . , xs)

– ∀x1,∀x2, . . . ,∀xkP (c1, . . . , cr, x1, . . . , xs)

Variables which have been quantified are called bound variables.

1.3 What is a structure/interpretation?

An L(σ)-structure (definition by example), is a tuple M = (M,C,R, F ) to-
gether with “interpretations”. It provides an interpretation L(σ)-sentences so
that they me evaluated as true or false. By interpretation we mean that we
decode every string w ∈ L(σ) using our particular structure.

Example 4. Consider the signature for ordered sets OS. There are no constants,
no functions and the only relation is ∼. Here are three sentences in L(OS):

(R) ∀x x ∼ x.

(T) ∀x∀y∀z x ∼ y ∧ y ∼ z =⇒ z ∼ z.

(S) ∀x∀y x ∼ y =⇒ y ∼ x.
To specify a structure we just need to give an example of an object in which
the relation can be interpreted. We could take M = (R, ∅, ∅, {<}). In this
interpretation only the transitive property would hold. If we replace ‘less than’
with ‘less than or equal to’ then the transitive and symmetric properties would
hold. On the other hand if we used a set with an equivalence relation on it we
know that in this interpretation all of these sentences would be true.

An L(σ)-structure consists of

• a set M (called the universe of the model/interpretation)

• a collection of constants C ⊂M which is in bijection with the symbols Cσ

• a collection of function F with domain some power of M and range M
which are in bijections with Fσ whose number of inputs match the arity

• a collection of relations R on M in bijection with Rσ defined on the ap-
propriate number of variables.

1.4 What is a Theory and what is a Model?

A theory T is just a subset of L(σ) (the set of all formulas) that contains no
free variables.

Let M be an L(τ)-structure and P a bounded L(τ) formula.

M � P ⇐⇒ “P is true with interpretationM′′.

If T is a theory we say M is a model of T write M � T if and only if for
all P ∈ T we have M � P .

Example 5. The theory of groups T , would include the following sentences

Ass ∀x∀y∀z ∗ (∗(x, y), z) = ∗(x, ∗(y, z)).

Ident ∀x ∗ (x, 1) = ∗(1, x) = x.

Invers ∀x, ∃y, ∗(x, y) = ∗(y, x) = 1.

A group like (Z/10Z, 0,+) would provide a model M so M � T .
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1.5 What is a Complete and Consistent Theory?

An L(σ)-theory T is complete if and only if for every L(σ) formula P and
every model M we have M � P or M �!P . [If true in one of the models, then
true in all of the models]

We can’t find models for which [Explain Consistency, we need this for the
completeness theorem for the other proof of the compactness theorem]

2 Definable Sets and The Compactness Theo-
rem

2.1 What is a Definable Set?

As we vary over M, which are L(τ)-structures we can consider families of sets
S ⊂Mn which are first order definable or definable. Such families are ones
for which there exists some P (x1, x2, . . . , xn) an L(τ)-formula with free variables
x1, x2, . . . , xn such that for every M,

S = {(a1, . . . , an) ∈Mn : M � P (a1, . . . , an)} := P (M).

Observe that we are defining this uniformly over ALL structures and not just
for a fixed one. We want to avoid coincidences.

The idea here that some propositions (characterized by membership of a par-
ticular set) can’t be written down as first order formula (are not definable sets).
This is analogous to the fact that there are certain problems in computatbility
that exists but have no algorithm: Problems are phrased in terms languages
(which are collections of strings) for which you seek a turning machine that out-
puts “YES!” to every element in the language. These are not in the restricted
class of Turing Decidable languages. 1

Example 6. The set of squares in a ring is definable:

{r ∈ R : ∃s ∈ R r = s2}.

2.2 A Reason For Algebraic Geometers to care about de-
finable sets

Proposition 1. The definable sets in the language of algebraically closed fields
are the Zariski constructible sets.

Proof. Recall that a constructable set is just a finite union of open and closed
subsets.

Suppose that K = K̄. Every closed set Z ⊂ Kn is Zariski definable as

Z = {(a1, a2, . . . , an) ∈ Kn : f1(~a) = 0 ∧ f2(~a) = 0 ∧ . . . ∧ fm(~a) = 0}

where the fi generate the ideal corresponding to Z.
Similarly the negation of the proposition shows that open sets are definable.

Also since unions correspond to taking ∨s and intersections correspond to taking

1Question: Can you use these crazy ultra product constuctions to get produce new turing
machines? Are these projective limits?
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∧’s we have that the finite intersections and unions of open and closed sets are
definable. This shows that constructible sets are a subset of definable sets.

Conversely, let S = φ(K) be a definable subset of Kn. We will show it is
constuctable. We will prove it inductively.

First it is true for atomic formula: the onle atomic formulae in the lan-
guage are those which involve the function symbols (addition, multiplication,
subtraction) and “=”. These define Zariski closed sets.

Now the general formulas obtained from the atomic formula by taking nega-
tion (completmenting), conjunction (intersecting) and disjunction (unioning).
Any finite combo of these operations will produce a constructible set. This
shows that the definable sets are contained in the constructible sets.

2.3 What does the Compactness theorem Say and How
can you use it?

The idea of the next theorem the following: In first order logic you can test
satisfiability of theories by testing finite subsets of the theory.

Theorem 1 (Compactness Theorem). Let T ⊂ L(τ) be a theory. If for every
finite T0 ⊂ T there exists some M0 such that M0 � T0 then there exists some
M such that M � T .

Before proving the theorem we will look at some applications:

Proposition 2. Determining if a given element of a group is in the cyclic group
generated by another element.

Proof. To our normal language of groups we adjoin two parameters to specify
marked elements. Let θ = θ(x, y) be the proposition that y is in the cyclic group
generated by x. Let

T = {θ} ∪ {xn 6= ym : n,m ∈ N}.

Observe that y being in the cyclic group generated by x and the propositions
on the left hand side contradict each other. We will show that there exists a
model for this theory which is a contradiction. This in turn will imply that θ
can’t be written down as a first order sentence.

We will show that every finite subcollection of propositions from T has a
model. By the compactness theorem this implies that there exists a model for
T : If T0 is a subset of T then there exists some M and N such that if m > M
and n > N the propositions xn 6= ym are not in T0. Let G0 be a cyclic group
of large order L WAY WAY bigger than M and N . Let x be it’s generator and
let y be the (L− 1)st power of x. This models T0.

Proposition 3. The set of vertices in a directed graph which have the same in
and out degree is not definable.

This is an example where it is easy to see you really need to consider the
“definable sets” as families within every model: If Γ is the directed graph with
two nodes and two directed edges then the proposition x = x defines a subset of
vertices with the same in and out degree. The same proposition does not define
the subset of vertices with the same in and out degree for an aribitrary directed
graph.
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Proof. For a given vertex v convince yourself that one can define the propositions
using first order logic:

• v has at least one in edge and out edge.

• v has least n in edges and n out edges.

• v has less than n in edges and n out edges.

• v has exactly n in edges and n out edges.

After you have convinced yourself the above work we continue as follows:
Let θ(v) be the proposition that v has the same in and out degree. Let ψn(v)
to be the proposition that v has the same in and out degree which is equal to
n. Consider the theory

T = {θ} ∪ {!ψn : n ∈ N}.

We will apply the compactness theorem to show that T has a model. The
propositions in the language contradict each other. We conclude that θ is not
first order.

For any finite subset T0 ⊂ T there is a maximal n such that !ψn ∈ T0. Let Γ
be any graph such that is in degree is the same as the out degree on every vertex
but that the degree is so high at each vertex that all that !ψn propositions are
satisfied. This show that Γ � T0.

3 Ultra-Filters, Ultra-Products, New Models from
Old Models, and Los’s Tautology

We will look at two proofs of the compactness theorem. The one that Tom pre-
sented was using Los’s theorem. There is a second proof suggested by Michelle
Manns that uses Gödel’s completeness theorem.

To begin we will need ultra products.

3.1 Ultrafilters give Ultraproducts

Let I be some set and let P(I) denote it’s power set. An ultra filter is a special
collection of subsets U ⊂ P(I). They are special in the sense that U = µ−1(1)
where µ : P(I)→ {0, 1} is a measure.

Let Si be a family of sets indexes by I. The ultra product is the following
quotient ∏

i∈I Si

∼
.

The definition equivalence: (ai) ∼U (bi) if and only if the places where the
sequences agree is a set of measure one, that is µ{i ∈ I : ai = bi} = 1.

The following propositions are nice exercises that show the definition of an
Ultrafilter in terms of a measure gives you a definition of an ultra product in
terms the wacky definition.

Proposition 4 (Measure Defn implies Crazy Defn). Let µ : P(I)→ {0, 1} with
µ 6= 0. (Read the claims and proofs one at a time... actually it’ll probably be
easier to prove these yourself read the proofs.)
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1. No two disjoint sets both have measure 1.

2. Either a set or its compliment have measure 1.

3. If two sets have measure 1 and have a nonempty intersection, Then their
intersection has measure 1.

Proof. 1. Suppose that A ∩B = ∅ and that they both have measure 1. The
implies µ(A ∪B) = µ(A) + µ(B) = 2. A Contradiction.

2. 1 = µ(I) = µ(A ∪Ac) = µ(A) + µ(Ac).

3.

µ(A ∩B) = µ((Ac ∪Bc)c)
= 1− µ(Ac ∪Bc)
≥ 1− (µ(Ac) + µ(Bc))

= 1.

4.

3.2 Products and Ultraproducts of L(τ)-structures

This is what we are aiming for:

Lemma 1 (Los’s Tautology). If φ is any L(τ)-sentence then∏
iMi

U
� φ ⇐⇒ {i ∈ I : Mi � φ} ∈ U

We are currently lacking definitions.

• What does “
∏
iMi/ ∼” means as a model?

• What does is mean for “
∏
iMi/ ∼” to prove a proposition?

• How is What does “
∏
iMi/ ∼” even and L(τ)-structure?

• Given {Mi}i∈I a family of L(τ)-structures does
∏
iMi have an L(τ)-

structure?

• Does it the expression
∏
i∈I Mi even make sense?

Recall that an L(τ)-structure consists of three things: constants Cτ , relations
Rτ and functions Fτ . Actually I lied, because implicitly for every M there is a
universe (aka plain old set) M on which the constants, functions and relations
are defined. These are what we need to check.

Example 7 (Products of Structures). Let’s look at the simple case of the
product of two models: suppose M and N are L(τ)-structures with universes M
and N respectively. Then in order to make an L(τ)-structure M ×N we need
to examine the constants, functions and relations. These should exists on the
universe for M×N which should be M ×N .
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constants are pairs of constants. If c ∈ Cτ and m represents c in M and n
represents c in N then (m,n) represents c in M ×N .

functions: given f in Fτ represented by fM and fN respectively then fM×fN :
M ×N →M ×N will represent f in M×N.

relations: The product of a relation is a relation: If RM ⊂M ×M and RN ⊂
N ×N then (RM ×RN ) ⊂ (M ×M ×N ×N) but by reordering we have
RM × RN ⊂ (M ×N) × (M ×N). There amounts to (a, b)RM×N (a′, b′)
if and only if aRMa

′ and bRNb
′.

[Check universal property] [Check for infinite products] [Not every Quotient
of a L(τ) structures is an L(τ)-structure.]

3.2.1 What is the stucture associated the the Ultra-Product of struc-
tures?

To make sense of
∏
iMi/ ∼ we need to make the constants,functions and re-

lations all descend to quotients by the equivalence relations. The universe for
our new model will be

∏
iMi/ ∼. Elements of the product will be written as

a = (ai)i∈I = (ai). And recall that on the above set we had (ai) ∼ (bi) if and
only if {i ∈ I : ai = bi} has measure one. We will denote equivalence classes in
the product by [(ai)] = [ai].

Constants We are given ci ∈ Mi representing some c ∈ Cσ for each Mi. The
constant in the ultra-product model will be [ci].

Functions Suppose we have a model and we just want to take the quotient of
said model by some arbitrary relation. If fM represents f ∈ Fτ then we
need to check that f̄M defined by

f̄M ([−]) := [fM (−)]

is well defined. This means that if m1,m2 ∈ M with [m1] = [m2] then
[fM (m1)] = [fM (m2)]. 2

Let M =
∏
iMi, with a = (ai)i∈I and b = (bi)i∈I . Suppose that

µ(S) := µ{i ∈ I : ai = bi} = 1 then we need to show that [(fi(ai))i∈I ] =
[(fi(bi))i∈I ] meaning µ(T ) := µ{i ∈ I : fi(ai) = fi(bi)} = 1.

Since S ⊂ T this implies that µ(S) ≤ µ(T ), but µ(S) = 1 which implies
that 1 ≤ µ(T ) which implies that µ(T ) = 1 since the measure is 0,1 valued.

Relations We will take our definition to be the following:

[(ai)]R̄[(bi)] ⇐⇒ µ{i ∈ I : aiRibi} = 1.

I have no good reason why one should define the relation like this but it
makes it work. We need to show this relation is well-defined on equivalence
classes. Suppose that [ai] = [bi] that [a′i] = [ai] and [b′i] = [bi] then we
need to show that [a′i]R[b′i].

2This provides lots of examples of why we are using ultra-filters instead of some random
equivalence relation. Closer examination this condition will either show that there exists other
quotients (equivalence relations) that give well defined models or that all good quotients come
from Ultra-Filters.
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Unraveling the definitions we are given

µ{i ∈ I : ai = a′i} = 1, µ{i ∈ I : bi = b′i} = 1

and we need to show (a′i)R(b′i) which mean

µ{i ∈ I : a′iRib
′
i} = 1.

Now we can understand how to interpret a sentence in our ultraproduct
structure: It starts from understanding interpretations of atomic formula. If we
can understand what ∏

iMi

∼
� φ

means for φ an atomic formula then we can understand what it means for general
formula.

WEEEELLL, there are only two types of atomic formula: 1. equations
involving terms (which is just equality in the set M =

∏
iMi/ ∼) and relations

(which would have the interpretation in the ultra product relation definition we
just defined).

Check Los’ Tautology for the simple cases of Atomic Formulae. It should
now appear to be a tautology.

Corollary 1. You can have a bunch of models Mi all of which don’t prove a
theory whose ultra product does model a theory!

4 Proof Compactness Theorem via Los’s Tau-
tology

Lemma 2 (Los’s Tautology). If φ is any L(τ)-sentence then∏
iMi

U
� φ ⇐⇒ {i ∈ I : Mi � φ} ∈ U

We will prove the compactness theorem from Los’s Tautology and using
existence of an ultra filter on the collection of finite subsets of the theory T
satisfying a particular property. This is weird to parse because our index set I
is a collection of finite subsets (a set of sets) and an ultrafilter on I is a measure
on the powerset of I (the collection of subsets of a set of sets).

The property that we want is that for any T ′ ⊂ T finite the collection of sets
that contain this set has measure 1:

∀T ′ ⊂ T finite µ{S ∈ P(T ) : S ⊃ T ′} = 1 (1)

Tainted Proof of Compactness Theorem. By the hypothesis of the compactness
theorem for every finite subset of the theorey S ⊂ T there exists some MS such
that MS � S. We will show ∏

SMS

∼
� T.

For every φ ∈ T , if φ ∈ S then the model that exists for S proves φ. In the
language of sets we have

{S ∈ I : Ms � φ} ⊂ {S ∈ I : {φ} ⊂ S}.
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Taking measures

µ{S ∈ I : Ms � φ} ≥ µ{S ∈ I : {φ} ⊂ S} = 1

where the right hand side follows from the hypotheses on the measure. But not

µ(S ∈ I : MS � φ}) = 1 ⇐⇒
∏
S

MS/ ∼� φ

by Los Theorem. So we are done.

4.0.2 proving the existence of the measure we used

Lemma 3. Suppose T is an L(τ)-theory and for every finite subset S of T there
exists some MS � S. Then there exists some measure µ : P(T )finite → {0, 1}
such that for all S ⊂ T finite

µ{S′ ⊂ T : S ⊂ S′} = 1.

Lemma 4 (Zorn’s Lemma). Let (P,≤) be a partially ordered set. If every
increasing sequence has a maximal element then there exists a maximal element
of P .

We will define a partial ordering on the set of measures:

µ ≤ ν ⇐⇒ supp(µ) ⊂ supp(ν).

The support
{{0,1}-values function. We need to check that every increasing

sequence of measures has a maximal element. Suppose that . . . ≤ µi−1 ≤ µi ≤
µi+1 ≤ . . . then let

supp(mu) :=
⋃
i

supp(µi)

this sure as hell defines a function but we need to check that it is a measure.

Measure of Full Set µ(I) = 1 by subset property of and nontriviality of µi.

Additivity If A ∩B = ∅. We will analyze this by cases.

If both µ(A) and µ(B) are zero then we are ok.

Suppose that µ(A) = 1, if A ∈ supp(µi) then A ∈ supp(µj) for every
j ≥ i. Since the µj are measures we have that B /∈ supp(µj).

Suppose that µ(A) = 0 [Fill in cases]

5 Definability of Finiteness Gives Uniform Bounds

Theorem 2 (Definability and Uniform Bounds). Let L(τ) be a first order lan-
guage, φ(x, y) be a sentence is that language and T a theory in that Language.

{b ∈M : #φ(M, b) <∞} definable

if and only if
There exist some constant C > 0 such that for all models and all parameters

#φ(M, b) <∞ =⇒ #φ(M, b) <∞.
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Proof. Suppose no such uniform bound exist and that there exists some θ such
that θ(b) is true if and only if

#φ(M, b) := #{a ∈M : φ(a, b)} <∞

We will derive a contradition. Since there is no uniform bound there exists a se-
quence of models and parameters {(Mn, bn)}∞n=1 that violate the boundedness...
say we have them doing this:

n < #φ(Mn, bn) <∞

as n→∞.
We will show that θ is not definable by application of the compactness the-

orem:

T ∪ {θ} ∪ {“ at least n distinct elts satisfy φ(x, b)′′ : n ∈ N}

Our models Mn establish this for finite subset of this theory (they are finite,
and we can finite one with m distict elements for every m. Which means that
there exists a model for the entire theory. This in turn means that there are
more than n distinct elements satisfying the propositions for every n while at
the same time being finite. This is a contradiction.

Conversely suppose that such a bound exists. We need to show that we
can test for finiteness. This can be done by seeing if C + 1 elements define the
proposition,

ψ(b) := ∃x1, . . . , xC+1 (
∧
i<j

xi 6= xj) ∧ (
∧
i

φ(xi, b))

ψ(b) ⇐⇒ #{a ∈M : φ(a, b)} <∞.

5.1 Is there a variation?

The proposition above states ”if finiteness is definable then you whenever the
set of interest is bounded it has a uniform bound”. Here’s what I was thinking
you could do: if every model M has as a measure on µ on M one could try to
replace cardinality hypotheses with measure hypothesis.

Conjecture 1 (Definability and Uniform Bounds (Measure Theoretic Version)).
Let L(τ) be a first order language, φ(x, y) be a sentence is that language and T
a theory such that every model M is a measure space with measure µ.

{b ∈M : µ(φ(M, b)) <∞} definable

if and only if
There exist some constant C > 0 such that for all models and all parameters

µ(φ(M, b)) <∞ =⇒ µ(φ(M, b)) <∞.

According to a math overflow question I asked this is false since Measure
theory is a second order theory and this doesn’t make sense. Henry Towsner
appears to have some sort or replacement for this theory. Also, for those who
are interested in relating measure theory to Model Theory some of the papers
of Anand Pillay seem to be a good place to start.
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