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The Affine Line

S

A1
S = Spec(S[T ])

S ! S[T ] A1
S ! Spec(S)

Spec(S)

S[T ]

Algebra Geometry

ring scheme

affine line over S
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Automorphisms of 
Affine Line

A1
SA1

S

Spec(S)

 

Aut
S

(S[T ])op

RingsSchemes

Aut(A1
S)

group of polynomials invertible under composition
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Affine Linear Subgroup
AL1(S) ⇢ Aut(A1

S)

 (T ) = a+ bT
a 2 S
b 2 S⇥

( 1 �  2)(T ) = a1 + b1a2 + b1b2T

 1(T ) = a1 + b1T  2(T ) = a2 + b2T,Group Law

A1
SA1

S

Spec(S)
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Automorphisms over 
Domains

S a domain
Theorem.

=) Aut(A1
S) = AL1(S)

Automorphisms of the affine line over domains 
are really really really boring.

S[T ] = S[ (T )] =) deg( (T ))  1

proof.
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Non-Boring 
Automorphisms

 (T ) = T + pT 100
mod p2

 �1
(T ) = T � pT 100

mod p2

 (T ) 2 Aut(A1
Z/p2)

deg( n(T ))  100Iterates have bounded degree:

S = Z/p2 (Ring with nilpotents!)

 (T )Has finite order: has order p
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MAIN POINTS

• Univariate polynomials under composition 
have finite order (over        )

• Iterates of a univariate polynomial under 
composition have bounded degree.

• Univariate polynomials under composition 
are really algebraic groups! (over       )

• Univariate polynomials automorphism 
groups are solvable!

Z/pn

Z/pn
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Examples
polynomial order coe�cient ring

1 + T 2 Z/23
1 + T 16 Z/24

T + 2

2T 4
4 Z/24

T + 2

3T 4
2 Z/24

T + 2

2T 10
+ 2

3T 5
8 Z/24

T 2
+ 2

2T 10
8 Z/24
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More Examples

T + pT 2 + p2T 4
mod pr

p = 5, order = 125

p = 7, order = 343

p = 11, order = 1331

pr�1

r = 4(       )

This is the typical case
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Even More Examples

order25 80T 10
+ 350T 9

+ 620T 8
+ 300T 7

+ 180T 6
+ 145T 5

+ 560T 4
+ 525T 3

+265T 2
+ 571T + 191,

order125 555T 10
+ 400T 9

+ 605T 8
+ 305T 7

+ 435T 6
+ 470T 5

+ 250T 4
+ 490T 3

+515T 2
+ 346T + 356,

order500 230T 10
+ 405T 9

+ 335T 8
+ 410T 7

+ 205T 6
+ 325T 5

+ 620T 4
+ 195T 3

+10T 2
+ 62T + 160,

order625 370T 10
+ 70T 9

+ 75T 8
+ 65T 7

+ 385T 6
+ 450T 5

+ 200T 4
+ 560T 3

+395T 2
+ 606T + 487,

order125 390T 15
+ 330T 14

+ 300T 13
+ 290T 12

+ 220T 11
+ 230T 10

+ 580T 9
+ 220T 8

+575T 7
+ 430T 6

+ 600T 5
+ 365T 4

+ 230T 3
+ 395 ⇤ T 2

+ T + 285

Aut(A1
Z/54)
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Our Setup

Rings we are thinking about:

Aut(A1
S

) = Aut
S

(S[T ])opWe Study:

S = R/qn (non reduced!)
qR = hqi prime

Where:

q = p O(U ⇥ A1
Z)

corresp. to(                  )R =
coord ring of affine
scheme

q = pR = Z (wittfinitesimal)

q = tR = F [t] (infinitesimals)
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Subgroups: Abelian 
ones!

gr,s := ker(Aut(A1
R/qr ) ! Aut(A1

R/qs)

gr,s ⇢ Aut(A1
R/qr ) s � r/2,

f(T ) 2 R/qr�s[T ],

(T + psf(T )) � (T + psg(T )) = T + ps(f(T ) + g(T ))

Group Law:

reduction map

important feature
qs · qs ⌘ 0 mod qr

 (T ) = T + qsf(T ) 2 gs,r

Should be viewed as q-adically close to
the identity! Like a Lie algebra!
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Subgroups: Bounded 
Degree

8m � 2, deg( mod qm)  d2m�2

eAd(n,R, q) ⇢ Aut(A1
R/qn)

Defn/Proposition 

Corollaries
1) Every iterate of                        has bounded 
degree.

 2 Aut(A1
R/qn)

 2 Aut(A1
Z/pn)2) Every                        has finite order.
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Corollaries
1) Every iterate of                        has bounded 
degree.

 2 Aut(A1
R/qn)

 2 Aut(A1
Z/pn)2) Every                        has finite order.

If                         and                  then 2 Aut(A1
R/qn) deg( ) = d  2 eAd(n,R, q)

The Point:

Remark:
The explicit bound on the degree using this method is
super shitty.

Wednesday, February 13, 13



 (T ) = a0 + a1T + qf(T )
e (T ) = ã0 + ã1T + qf̃(T )

ordT (f), ordT ( ˜f) � 2

 ( e (T )) ⌘ a0 + a1[ã0 + ã1T + qf̃(T )] + qf(ã+ ãT )

= a0 + a1ã0 + (a1ã1)T

+q(a1f̃(T ) + f(ã0 + ã1T )) (1)

composing these polynomials gives

which shows the set is closed under composition.

8m � 2, deg( mod qm)  d2m�2

eAd(R, q) ⇢ Aut(A1
R/qn)

example:
d =

n = 2

whatever

eAd(2, R, q) polynomials mod     of degree less than dq2

n
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deg( mod q2) � deg(f mod q),

deg( mod q3) � deg(g mod q), deg(f mod q2),

 ( e (T )) = a0 + a1 e (T )
+q[f(ã0 + ã1T ) + qf 0(ã0 + ã1T )f̃(T )]

+q2g(ã0 + ã1T )

deg( mod q2)  d

deg( mod q3)  2d

 (T ) = a0 + a1T + qf(T ) + q2g(T ) mod q3

ordT (f) � 2

ordT (g) � 3

next case: eAd(3, R, q)

Want to show when we compose two of these guys
we get one back. Look at:

composing gives 
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• (deg f(ã0 + ã1T ) mod q2)  2d,

• (deg f 0
(ã0 + ã1T ) ˜f(T ) mod q)  (d� 1) + d

• (deg g(ã0 + ã1T ) mod q)  2d,

 ( e (T )) = a0 + a1 e (T )
+q[f(ã0 + ã1T ) + qf 0(ã0 + ã1T )f̃(T )]

+q2g(ã0 + ã1T )

deg( mod q2) � deg(f mod q),

deg( mod q3) � deg(g mod q), deg(f mod q2),

information computation
d

2d

deg( ( e (T )))  2d
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Algebraic Groups

• Algebraic varieties where group laws are 
given by polynomial expressions.

• Example: matrix groups like the general 
linear group
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As Algebraic Groups!

G(Fp) ⇠= An(Z, p).
There exist          finite dimensional such thatG/Fp

G(Fp) ⇠= Aut(A1
Z/pn).

G/FpThere exist          infinite dimensional such that

Theorem. 
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Algebraicity Idea:
Apply (Greenberg Transform = p-Jet Functors)!

Gr

n
(X) = Jn

p (X) mod p

Grn(X)(Fp) = X(Z/pn+1)Key Property:

defined over Fp mixed characteristic

higher dimension 
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Solvability

An(R, q)Aut(A1
Rn

)The groups                and           
 are solvable. 

Theorem.
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Solvable Groups
The collection of solvable groups is built inductively:

base defn:  If a group is abelian then it is solvable.

inductive part:  a group is solvable when one of the 
following is true
1) It is the  the extension of an abelian group by a 
solvable group.
2) It is the extension of a solvable group by an 
abelian group.

1 ! V ! E ! H ! 1
extension of H by V
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Example

AL1(S) is solvable.Claim:

proof. 

AL1(S) ⇠= S o S⇥

1 ! S ! S o S⇥ ! S⇥ ! 1
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Subgroups: Newton 
Polygonish condition

 (T ) ⌘ a0 + a1T + qa2T 2 + q2a3T 4 + · · ·+ qd�1adT d 2 R/qd[T ]

The collection of invertible polynomials of the form

form a subgroup
Ad(R, q) ⇢ Aut(A1

R/qd)

Coefficients are increasingly divisible by q

An(R, q)

proof is similar to the computations we did before.
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Idea Behind Solvability
Use the groups       

gr,s = ker(Aut(A1
R/qr ) ! Aut(A1

R/qs))

s � r/2

or their variants to build up the groups we want.

Example.              is solvable. A2(R, q)

proof is by induction. 
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Expected Degree 
Bounds

The Theorem we stated earlier is far from optimal for 
automorphisms of quotients of the integers. 

deg( n
mod pr)  (deg( )� 1)(r � 1) + 1

 2 Aut(A1
Z/pr )

Here is the expected better bound (for a typical 
element):
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