Automorphisms of the Affine Line over Nonreduced Rings

University of New Mexico Geometry Seminar Taylor Dupuy

The Affine Line

Algebra
ring
S
$S[T]$
$S \rightarrow S[T]$

Geometry

affine line over S

Automorphisms of Affine Line

Schemes
Rings
$\operatorname{Aut}\left(\mathbb{A}_{S}^{1}\right) \quad \operatorname{Aut}_{S}(S[T])^{o p}$
group of polynomials invertible under composition

Affine Linear Subgroup

$$
\begin{gathered}
\mathrm{AL}_{1}(S) \subset \operatorname{Aut}\left(\mathbb{A}_{S}^{1}\right) \\
\psi(T)=a+b T \\
a \in S \\
b \in S^{\times}
\end{gathered}
$$

Group Law $\quad \psi_{1}(T)=a_{1}+b_{1} T, \psi_{2}(T)=a_{2}+b_{2} T$

$$
\left(\psi_{1} \circ \psi_{2}\right)(T)=a_{1}+b_{1} a_{2}+b_{1} b_{2} T
$$

Automorphisms over Domains

Theorem.

$$
\begin{gathered}
S \text { a domain } \\
\Longrightarrow \operatorname{Aut}\left(\mathbb{A}_{S}^{1}\right)=\mathrm{AL}_{1}(S)
\end{gathered}
$$

proof.

$$
S[T]=S[\psi(T)] \Longrightarrow \operatorname{deg}(\psi(T)) \leq 1
$$

Automorphisms of the affine line over domains are really really really boring.

Non-Boring Automorphisms

$S=\mathbb{Z} / p^{2} \quad$ (Ring with nilpotents!)

$$
\begin{gathered}
\psi(T)=T+p T^{100} \bmod p^{2} \\
\psi^{-1}(T)=T-p T^{100} \bmod p^{2} \\
\psi(T) \in \operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z} / p^{2}}^{1}\right)
\end{gathered}
$$

Iterates have bounded degree: $\quad \operatorname{deg}\left(\psi^{n}(T)\right) \leq 100$ Has finite order: $\psi(T)$ has order \mathbf{P}

MAIN POINTS

- Univariate polynomials under composition have finite order (over \mathbb{Z} / p^{n})
- Iterates of a univariate polynomial under composition have bounded degree.
- Univariate polynomials under composition are really algebraic groups! (over \mathbb{Z} / p^{n})
- Univariate polynomials automorphism groups are solvable!

Examples

polynomial	order	coefficient ring
$1+T$	2	$\mathbb{Z} / 2^{3}$
$1+T$	16	$\mathbb{Z} / 2^{4}$
$T+2^{2} T^{4}$	4	$\mathbb{Z} / 2^{4}$
$T+2^{3} T^{4}$	2	$\mathbb{Z} / 2^{4}$
$T+2^{2} T^{10}+2^{3} T^{5}$	8	$\mathbb{Z} / 2^{4}$
$T^{2}+2^{2} T^{10}$	8	$\mathbb{Z} / 2^{4}$

More Examples

$$
\begin{gathered}
T+p T^{2}+p^{2} T^{4} \quad \bmod p^{r} \quad(r=4) \\
p=5, \text { order }=125 \\
p=7, \text { order }=343 \\
p=11, \text { order }=1331
\end{gathered}
$$

This is the typical case

Even More Examples

$\operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z} / 5^{4}}^{1}\right)$

$$
\begin{array}{ll}
\text { order25 } & 80 T^{10}+350 T^{9}+620 T^{8}+300 T^{7}+180 T^{6}+145 T^{5}+560 T^{4}+525 T^{3} \\
& +265 T^{2}+571 T+191, \\
\text { order125 } & 555 T^{10}+400 T^{9}+605 T^{8}+305 T^{7}+435 T^{6}+470 T^{5}+250 T^{4}+490 T^{3} \\
& +515 T^{2}+346 T+356, \\
\text { order500 } & 230 T^{10}+405 T^{9}+335 T^{8}+410 T^{7}+205 T^{6}+325 T^{5}+620 T^{4}+195 T^{3} \\
& +10 T^{2}+62 T+160, \\
\text { order625 } & 370 T^{10}+70 T^{9}+75 T^{8}+65 T^{7}+385 T^{6}+450 T^{5}+200 T^{4}+560 T^{3} \\
& +395 T^{2}+606 T+487, \\
\text { order125 } & 390 T^{15}+330 T^{14}+300 T^{13}+290 T^{12}+220 T^{11}+230 T^{10}+580 T^{9}+220 T^{8} \\
& +575 T^{7}+430 T^{6}+600 T^{5}+365 T^{4}+230 T^{3}+395 * T^{2}+T+285
\end{array}
$$

Our Setup

We Study: $\quad \operatorname{Aut}\left(\mathbb{A}_{S}^{1}\right)=\operatorname{Aut}_{S}(S[T])^{o p}$

Where: $\quad S=R / q^{n} \quad$ (non reduced!) $q R=\langle q\rangle$ prime

Rings we are thinking about:

$$
\begin{array}{ccc}
R=\mathbb{Z} & q=p & \text { (wittfinitesimal) } \\
R=F[t] & q=t & \text { (infinitesimals) } \\
R=\begin{array}{c}
\text { coord ring of affine } \\
\text { scheme }
\end{array} & q=p & \binom{\text { corresp. to }}{\mathcal{O}\left(U \times \mathbb{A}_{\mathbb{Z}}^{1}\right)}
\end{array}
$$

Subgroups:Abelian ones!

$$
\mathfrak{g}_{r, s} \subset \operatorname{Aut}\left(\mathbb{A}_{R / q^{r}}^{1}\right), s \geq r / 2 \longleftarrow q^{s} \cdot q^{s} \equiv 0 \bmod q^{r}
$$

reduction map

$$
\mathfrak{g}_{r, s}:=\operatorname{ker}\left(\operatorname{Aut}\left(\mathbb{A}_{R / q^{r}}^{1}\right) \rightarrow \operatorname{Aut}\left(\mathbb{A}_{R / q^{s}}^{1}\right)\right.
$$

$$
\psi(T)=T+q^{s} f(T) \in \mathfrak{g}_{s, r}, \quad f(T) \in R / q^{r-s}[T]
$$

Should be viewed as q-adically close to the identity! Like a Lie algebra!
Group Law:

$$
\left(T+p^{s} f(T)\right) \circ\left(T+p^{s} g(T)\right)=T+p^{s}(f(T)+g(T))
$$

Subgroups: Bounded Degree

Defn/Proposition

$$
\begin{gathered}
\widetilde{A}_{d}(n, R, q) \subset \operatorname{Aut}\left(\mathbb{A}_{R / q^{n}}^{1}\right) \\
\forall m \geq 2, \quad \operatorname{deg}\left(\psi \bmod q^{m}\right) \leq d 2^{m-2}
\end{gathered}
$$

Corollaries
I) Every iterate of $\psi \in \operatorname{Aut}\left(\mathbb{A}_{R / q^{n}}^{1}\right)$ has bounded degree.
2) Every $\psi \in \operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z} / p^{n}}^{1}\right)$ has finite order.

Corollaries

I) Every iterate of $\psi \in \operatorname{Aut}\left(\mathbb{A}_{R / q^{n}}^{1}\right)$ has bounded degree.
2) Every $\psi \in \operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z}}^{1} / p^{n}\right)$ has finite order.

The Point:

If $\psi \in \operatorname{Aut}\left(\mathbb{A}_{R / q^{n}}^{1}\right)$ and $\operatorname{deg}(\psi)=d$ then $\psi \in \widetilde{A}_{d}(n, R, q)$

Remark:

The explicit bound on the degree using this method is super shitty.

$$
\widetilde{A}_{d}(R, q)_{\mathrm{n}} \subset \operatorname{Aut}\left(\mathbb{A}_{R / q^{n}}^{1}\right)
$$

$\forall m \geq 2, \quad \operatorname{deg}\left(\psi \bmod q^{m}\right) \leq d 2^{m-2}$
$d=$ whatever

$\widetilde{A}_{d}(2, R, q)$ polynomials mod q^{2} of degree less than d

$$
\begin{aligned}
& \psi(T)=a_{0}+a_{1} T+q f(T) \\
& \widetilde{\psi}(T)=\tilde{a}_{0}+\tilde{a}_{1} T+q \tilde{f}(T)
\end{aligned}
$$

$$
\operatorname{ord}_{T}(f), \operatorname{ord}_{T}(\tilde{f}) \geq 2
$$

composing these polynomials gives

$$
\begin{aligned}
\psi(\widetilde{\psi}(T)) \equiv & a_{0}+a_{1}\left[\tilde{a}_{0}+\tilde{a}_{1} T+q \tilde{f}(T)\right]+q f(\tilde{a}+\tilde{a} T) \\
= & a_{0}+a_{1} \tilde{a}_{0}+\left(a_{1} \tilde{a}_{1}\right) T \\
& \quad+q\left(a_{1} \tilde{f}(T)+f\left(\tilde{a}_{0}+\tilde{a}_{1} T\right)\right)
\end{aligned}
$$

which shows the set is closed under composition.
next case: $\widetilde{A}_{d}(3, R, q)$

$$
\operatorname{ord}_{T}(f) \geq 2 \quad \operatorname{ord}_{T}(g) \geq 3
$$

$$
\psi(T)=a_{0}+a_{1} T+q f(T)+q^{2} g(T) \bmod q^{3}
$$

$$
\operatorname{deg}\left(\psi \bmod q^{2}\right) \leq d
$$

$$
\operatorname{deg}\left(\psi \quad \bmod q^{3}\right) \leq 2 d
$$

Want to show when we compose two of these guys we get one back. Look at:
$\operatorname{deg}\left(\psi \bmod q^{2}\right) \geq \operatorname{deg}(f \bmod q)$,
$\operatorname{deg}\left(\psi \bmod q^{3}\right) \geq \operatorname{deg}(g \bmod q), \operatorname{deg}\left(f \bmod q^{2}\right)$, composing gives

$$
\begin{aligned}
\psi(\widetilde{\psi}(T))= & a_{0}+a_{1} \widetilde{\psi}(T) \\
& +q\left[f\left(\tilde{a}_{0}+\tilde{a}_{1} T\right)+q f^{\prime}\left(\tilde{a}_{0}+\tilde{a}_{1} T\right) \tilde{f}(T)\right] \\
& +q^{2} g\left(\tilde{a}_{0}+\tilde{a}_{1} T\right)
\end{aligned}
$$

information

computation

$$
\left.\left.\psi(\widetilde{\psi}(T))=\frac{a_{0}+a_{1} \tilde{\psi}(T)}{} \quad \underline{\sim}+\tilde{a}_{0}+\tilde{a}_{1} T\right)+\left(q f^{\prime}\left(\tilde{a}_{0}+\tilde{a}_{1} T\right) \tilde{f}(T)\right]\right)
$$

$\operatorname{deg}\left(\psi \bmod q^{2}\right) \geq \operatorname{deg}(f \bmod q)$,
$\operatorname{deg}\left(\psi \bmod q^{3}\right) \geq \operatorname{deg}(g \bmod q) \operatorname{deg}\left(f \bmod q^{2}\right)$,

- $\left(\operatorname{deg} f\left(\tilde{a}_{0}+\tilde{a}_{1} T\right) \bmod q^{2}\right) \leq 2 d$,
- $\left(\operatorname{deg} f^{\prime}\left(\tilde{a}_{0}+\tilde{a}_{1} T\right) \tilde{f}(T) \bmod q\right) \leq(d-1)+d$
- $\left(\operatorname{deg} g\left(\tilde{a}_{0}+\tilde{a}_{1} T\right) \bmod q\right) \leq 2 d$,

$$
\operatorname{deg}(\psi(\widetilde{\psi}(T))) \leq 2 d
$$

Algebraic Groups

- Algebraic varieties where group laws are given by polynomial expressions.
- Example: matrix groups like the general linear group

As Algebraic Groups!

Theorem.

There exist G / \mathbb{F}_{p} finite dimensional such that

$$
G\left(\mathbb{F}_{p}\right) \cong A_{n}(\mathbb{Z}, p) .
$$

There exist G / \mathbb{F}_{p} infinite dimensional such that

$$
G\left(\mathbb{F}_{p}\right) \cong \operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z} / p^{n}}^{1}\right)
$$

Algebraicity Idea:

Apply (Greenberg Transform = p-Jet Functors)!

$$
\operatorname{Gr}^{n}(X)=J_{p}^{n}(X) \bmod p
$$

Key Property: $\quad \operatorname{Gr}^{n}(X)\left(\mathbb{F}_{p}\right)=X\left(\mathbb{Z} / p^{n+1}\right)$
higher dimension

Solvability

Theorem.
The groups $\operatorname{Aut}\left(\mathbb{A}_{R_{n}}^{1}\right)$ and $A_{n}(R, q)$ are solvable.

Solvable Groups

The collection of solvable groups is built inductively: base defn: If a group is abelian then it is solvable. inductive part: a group is solvable when one of the following is true
I) It is the the extension of an abelian group by a solvable group.
2) It is the extension of a solvable group by an abelian group.

> extension of H by V
> $1 \rightarrow V \rightarrow E \rightarrow H \rightarrow 1$

Example

Claim: $\mathrm{AL}_{1}(S)$ is solvable.
proof.

$$
\mathrm{AL}_{1}(S) \cong S \rtimes S^{\times}
$$

$$
1 \rightarrow S \rightarrow S \rtimes S^{\times} \rightarrow S^{\times} \rightarrow 1
$$

Subgroups: Newton Polygonish condition

The collection of invertible polynomials of the form

Coefficients are increasingly divisible by q proof is similar to the computations we did before.

Idea Behind Solvability

Use the groups

$$
\begin{aligned}
& g_{r, s}=\operatorname{ker}\left(\operatorname{Aut}\left(\mathbb{A}_{R / q^{r}}^{1}\right) \rightarrow \operatorname{Aut}\left(\mathbb{A}_{R / q^{s}}^{1}\right)\right) \\
& s \geq r / 2
\end{aligned}
$$

or their variants to build up the groups we want.
Example. $A_{2}(R, q)$ is solvable.
proof is by induction.

Expected Degree Bounds

The Theorem we stated earlier is far from optimal for automorphisms of quotients of the integers.

Here is the expected better bound (for a typical element):

$$
\begin{gathered}
\psi \in \operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z} / p^{r}}^{1}\right) \\
\operatorname{deg}\left(\psi^{n} \bmod p^{r}\right) \leq(\operatorname{deg}(\psi)-1)(r-1)+1
\end{gathered}
$$

