An Introduction to p -derivations and the Torsor of Lifts of the Frobenius

Taylor Dupuy
University of New Mexico

Texas Tech Algebra Seminar November 12th, 2012

PART I:
 Arithmetic Differential Algebra

PART II:
Deformation Theory

PART I

Arithmetic Differential Algebra

What is a p-derivation?

Fermat's Little Theorem
$\forall n \in \mathbb{Z}, \forall p$ prime

$$
\begin{array}{c|c}
n-n^{p}=p \\
\text { CRAP }=\frac{n-n^{p}}{p} \\
\delta_{p}(n)=\frac{n-n^{p}}{p} & \bmod p \\
& \text { The Frobenius is a } \\
F: A / p \mapsto A / p \\
a \mapsto a^{p}
\end{array}
$$

This is a p-derivation

Properties of p-derivations

Product Rule

$$
\delta_{p}(a b)=\delta_{p}(a) b^{p}+a^{p} \delta_{p}(b)+p \delta_{p}(a) \delta_{p}(b)
$$

Sum Rule

$$
\delta_{p}(a+b)=\delta_{p}(a)+\delta_{p}(b) \underbrace{\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{j} a^{p-j} b^{j}}_{\text {non-linear }}
$$

(Buium, Joyal ~1994)
Abstract Definition: $\delta_{p}: A \rightarrow B$ is a p-derivation provided that

Always an A algebra
Product Rule:

$$
\delta_{p}(a b)=\delta_{p}(a) b^{p}+a^{p} \delta_{p}(b)+p \delta_{p}(a) \delta_{p}(b)
$$

Sum Rule:

$$
\delta_{p}(a+b)=\delta_{p}(a)+\delta_{p}(b)-\sum_{j=1}^{p-1} \frac{1}{p}\binom{p}{j} a^{p-j} b^{j}
$$

Lifts of the Frobenius

Definition: A lift of the Frobenius is a ring homomorphism $\phi: A \rightarrow B$ such that

$$
\phi(a) \equiv a^{p} \bmod p
$$

Proposition: If $\delta_{p}: A \rightarrow B$ is a p-derivation then

$$
\phi(a):=a^{p}+p \delta_{p}(a)
$$

is a lift of the Frobenius.

Conversely, if B is p -torsion free ring with a lift of the Frobenius $\phi: A \rightarrow B$ then

$$
\delta_{p}(a):=\frac{\phi(a)-a^{p}}{p}
$$

defines a p-derivation.

EXERCISE:
 For $\delta_{p}: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\delta_{p}(n)=\frac{n-n^{p}}{p}$

show $\delta_{p}\left(p^{m}\right)=p^{m-1} .(\operatorname{unit} \bmod p)$

Example:

$$
\begin{aligned}
\delta_{p}(p) & =\frac{p-p^{p}}{p} \\
& =1-p^{p-1}
\end{aligned}
$$

Idea: order of vanishing is "bumped down"

$$
\begin{gathered}
\delta_{t}=\frac{d}{d t} \\
\delta_{t}\left(t^{n}\right)=n \cdot t^{n-1}
\end{gathered}
$$

p-derivations ring homomorphisms
$\delta_{p}: A \rightarrow A$

"Witt vectors"
"wittfinitesimals"
"Wittferentiation"

Big Analogies

Dual Numbers

$$
D_{1}(A)=A[t] /\left\langle t^{2}\right\rangle
$$

Truncated Witt Vectors
$W_{1}(A)$

Power Series

$$
D(A)=A[[t]]
$$

Witt Vectors
$W(A)$

General Philosophy
 (Borger-Weiland ~ 2004)

- Replace dual ring functor with other functors to get different forms of differential algebra!
- Another Example: Difference Rings

What are Witt Vectors???

$$
W_{1}(A) \cong_{\text {sets }} A \times A
$$

Funky Addition

$$
\left(a_{0}, a_{1}\right)+_{W}\left(b_{0}, b_{1}\right)=\left(a_{0}+b_{0}, a_{1}+a_{1}+p \sum_{j=1}^{p-1} \frac{1}{p}\binom{p}{j} a_{0}^{p-j} b_{0}^{j}\right)
$$

Funky Multiplication

$$
\left(a_{0}, a_{1}\right) *_{W}\left(b_{0}, b_{1}\right)=\left(a_{0}+b_{0}, a_{1} b_{0}^{p}+a_{0}^{p} a_{1}+p a_{1} b_{1}\right)
$$

What are Witt vectors in general?

$$
W(A) \cong_{\text {sets }} A^{\mathbb{N}}
$$

sum polyn

Funky Addition

$\left(a_{0}, a_{1}, a_{2}, \ldots\right)+_{W}\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(s_{0}(a, b), s_{1}(a, b), s_{2}(a, b), \ldots\right)$
Funky Multiplication

$$
\left(a_{0}, a_{1}, a_{2}, \ldots\right) *_{W}\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(m_{0}(a, b), m_{1}(a, b), m_{2}(a, b), \ldots\right.
$$

mult polyn

$$
W(A) \cong_{\text {sets }} A^{\mathbb{N}}
$$

Defining Property of Ring Structure:

The map $W(A) \rightarrow A^{\mathbb{N}}$ defined by

$$
\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mapsto\left(w_{0}(a), w_{1}(a), w_{2}(a), \ldots\right)
$$

is a ring homomorphism.

WHAT ARETHE w's???

usual componentwise

$$
\begin{aligned}
& w_{0}(a)=a_{0} \\
& w_{1}(a)=a_{0}^{p}+p a_{1} \\
& w_{2}(a)=a_{0}^{p^{2}}+p a_{1}^{p}+p^{2} a_{2} \\
& w_{3}(a)=a_{0}^{p^{3}}+p a_{1}^{p^{2}}+p^{2} a_{2}^{p}+p^{3} a_{3}
\end{aligned}
$$

EXERCISE:

Compute some of the addition polynomials

$$
\begin{aligned}
& w_{0}(a)+w_{0}(b)=w_{0}(s) \\
& w_{1}(a)+w_{1}(b)=w_{1}(s) \\
& w_{2}(a)+w_{2}(b)=w_{2}(s)
\end{aligned}
$$

exercise: $W\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$

$$
a_{0}+b_{0}=s_{0}
$$

$$
\left(a_{0}^{p}+p a_{1}\right)+\left(b_{0}^{p}+p b_{1}\right)=s_{0}^{p}+p s_{1}
$$

$\left(a_{0}^{p^{2}}+p a_{1}^{p}+p^{2} a_{2}\right)+\left(b_{0}^{p^{2}}+p b_{1}^{p}+p^{2} b_{2}\right)=s_{0}^{p^{2}}+p s_{1}+p^{2} s_{2}$

PART II

Kodaira Spencer Theory

Čech Cohomology

X scheme
G sheaf of groups
$\mathcal{U}=\left\{U_{i}\right\}_{i=1}^{n}$ open cover

Cocycles: $\quad\left(g_{i j}\right)$

$$
\begin{gathered}
\check{Z}^{1}(\mathcal{U}, G) \subset \prod_{i, j} G\left(U_{i j}\right) \\
g_{i j} g_{j k} g_{k i}=1 \\
g_{i j}^{-1}=g_{j i}
\end{gathered}
$$

$$
\check{H}^{1}(X, G)=\underset{\overrightarrow{\mathcal{U}}}{\lim } \check{H}^{1}(\mathcal{U}, G)
$$

Cohomology: $\left(g_{i j}\right) \sim\left(g_{i j}^{\prime}\right)$

$$
\begin{gathered}
\Longleftrightarrow \exists\left(h_{i}\right) \in \prod_{i} G\left(U_{i}\right) \\
h_{i} g_{i j} h_{j}^{-1}=g_{i j}^{\prime}
\end{gathered}
$$

$$
\check{H}^{1}(\mathcal{U}, G)=\check{Z}^{1}(\mathcal{U}, G) / \sim
$$

Kodaira-Spencer

- What do Moduli Spaces look like?
- Moduli Space $=$ Universal Space that parametrizes something (e.g. Curves)
- Kodaira Spencer <---> TANGENT SPACE
$\mathrm{KS}: T_{P} S \rightarrow H^{1}\left(\mathcal{X}_{P}, T_{\mathcal{X}_{P}}\right)$

$$
\begin{aligned}
& \delta_{i} \in T_{\mathcal{X}}\left(U_{i}\right) \\
& \delta_{j} \in T_{\mathcal{X}}\left(U_{j}\right)
\end{aligned}
$$

$$
X_{P}=\pi^{-1}(P)
$$

S

EXERCISE: Show the dimension of the moduli space

 of curves of genus g is $3 g-3$
compute this

Need This $\operatorname{dim}_{K} H^{1}\left(X, T_{X / K}\right)$
1
$\operatorname{dim}_{K} H^{0}(X, L)-\operatorname{dim}_{K} H^{1}(X, L)=\operatorname{deg}(L)-\operatorname{genus}(X)+1$
$T_{X / K}=\omega_{X / K}^{\vee}$
$\operatorname{deg}\left(\omega_{X / K}\right)=2 g-2$

Kodaira-Spencer Map (Differential Alg Style)
 KS : $\{$ derivations on $K\} \rightarrow H^{1}\left(X, T_{X}\right)$

$\delta: K \rightarrow K \quad K=$ field with a derivation

$$
\begin{array}{cc}
\text { Cover } & \text { Get Local Lifts } \\
X=\bigcup_{i} U_{i} & \delta_{i}:\left.\mathcal{O}\left(U_{i}\right) \rightarrow \mathcal{O}\left(U_{i}\right) \quad \delta_{i}\right|_{K}=\delta
\end{array}
$$

Take Differences

$$
\delta \mapsto\left[\delta_{i}-\delta_{j}\right] \in H^{1}\left(X, T_{X / K}\right)
$$

Deligne-Illusie Map

NOTATION! E, delta, X_O

RETAIN INFORMATION MODP'2 not MOD P'3
$\mathrm{DI}_{0}:\{p$-derivations on $R\} \rightarrow H^{1}\left(X_{0}, F^{*} I\right.$

$$
\delta: R \rightarrow R \quad R=\widehat{\mathbb{Z}}_{p}^{u r}
$$

Cover

$$
X=\bigcup_{i} U_{i} \quad \delta_{i}: \mathcal{O}\left(U_{i}\right) \rightarrow \mathcal{O}\left(U_{i}\right)
$$

$$
\left.\delta_{i}\right|_{R}
$$

$\left.\delta_{i}\right|_{R}$

Is it injective?
What does it do?
What doesn't it do?
Is it surjective?
How doesn't it do this?

Does this relate to SerreTate for Ab?
What is history for E? Is this f_{-}l?
not surj (missing zero)
Higher Order classes

Defn: a derivation of the Frobenius is a map $D: B \rightarrow A / p$ such that

$$
\begin{aligned}
D(a+b) & =D(a)+D(b) \\
D(a b) & =D(a) b^{p}+a^{p} D(b)
\end{aligned}
$$

THEOREM:
The pointwise difference of two p -derivations

$$
\delta_{1}, \delta_{2}: A / p^{2} \rightarrow \dot{A} / p
$$

is a derivation of the Frobenius.

LEMMA: A derivation of the Frobenius

$$
D: A / p^{2} \rightarrow A / p
$$

Gives a well-defined derivation of the Frobenius

$$
D: A / p \rightarrow A / p
$$

Derivations of the Frobenius

$$
\begin{aligned}
D(a+b) & =D(a)+D(b) \\
D(a b) & =D(a) b^{p}+a^{p} D(b)
\end{aligned}
$$

PROOF
$\delta_{1}, \delta_{2}: A \rightarrow B \quad B \in \mathrm{CRing}_{A}$
$D(a):=\delta_{1}(a)-\delta_{2}(a) \bmod \mathrm{p}$

Additivity:

$$
\mathrm{CRAP}=\frac{a^{p}+b^{p}-(a+b)^{p}}{p}
$$

$$
\begin{aligned}
D(a+b) & =\delta_{1}(a+b)-\delta_{2}(a+b) \\
& =\delta_{1}(a)+\delta_{1}(b)+\mathrm{CRAP}-\left(\delta_{2}(a)+\delta_{2}(b)+\mathrm{CRAP}\right. \\
& =D(a)+D(b)
\end{aligned}
$$

Product Rule:

$$
\delta_{i}(a b)=\delta_{i}(a) b^{p}+a^{p} \delta_{i}(b)+p \delta_{i}(b) \delta_{i}(b)
$$

Geometric Descent
X / K smooth projective
$K=\bar{K} \quad \operatorname{char}(K)=0$
$\delta: K \rightarrow K$
Theorem

$$
K^{\delta}=\{r \in K: \delta(r)=0\}
$$

T.F.A.E.

1. $\mathrm{KS}(\delta)=0$
2. $J^{1}(X) \cong T X$ as schemes over X
(3. $\exists X^{\prime} / K^{\delta}$ such that $X^{\prime} \otimes_{K^{\delta}} K \cong X$

Descent to the constants

Arithmetic Descent

$$
\begin{aligned}
& X / \widehat{\mathbb{Z}}_{p}^{u r} \text { smooth } \\
& \delta: \widehat{\mathbb{Z}}_{p}^{u r} \rightarrow \widehat{\mathbb{Z}}_{p}^{u r}
\end{aligned}
$$

Theorem

T.F.A.E.

1. $\mathrm{DI}_{0}(\delta)=0$
2. $J^{1}(X)_{0} \cong F^{*} T_{X_{0}}$ as schemes over X_{0}
3. X_{1} admits a lift of the p-Frobenius

Descent to the field with one element

X descends to Borger-Buium $\mathbb{F}_{1} \Longrightarrow \mathrm{DI}_{0}\left(\delta_{p}\right)=0$

THANK YOU!

How Does Delta Geometry Work?

Step I: Kolchin Style

Step 2: Jet Spaces reformulation

Step 3:Arithmetic Jet Spaces

Universal Property of p-Jet Spaces

$$
R=\widehat{\mathbb{Z}}_{p}^{u r}
$$

Example $\quad \mathbb{A}_{R}^{1}=\operatorname{Spec} R[x]$

$$
J^{1}\left(\mathbb{A}_{R}^{1}\right)=\widehat{\mathbb{A}}_{R}^{1} \hat{\times} \widehat{\mathbb{A}}_{R}^{1}
$$

$\mathcal{O}\left(J^{1}\left(\mathbb{A}_{R}^{1}\right)\right)=R[x][\dot{x}]^{\wedge}=R[x]\{\dot{x}\} \quad$ Restricted Power Series

Many birds with one Stone

- Difference Ring
- Differential Ring
- Lambda Ring

How do we get local lifts?

Get Local Lifts

How can I think about this?

Infinitesimal
Lifting Property

$$
I^{2}=0
$$

derivation setting

$$
C=D_{1}(B):=B[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle
$$

$$
I=\langle\varepsilon\rangle
$$

$A \longrightarrow$ Open Set

 Is this smoothness?
 Is this Hensel?

p -derivation setting

$$
\begin{gathered}
C=W_{1}(B) \\
I=V\left(W_{1}(B)\right)
\end{gathered}
$$

Rigorous Formulation of Descent???

$$
\begin{aligned}
\widehat{\mathbb{Z}}_{p}^{u r}= & \mathbb{Z}_{p}\left[\zeta: \zeta^{n}=1, p \nmid n\right] \\
\left(\widehat{\mathbb{Z}}_{p}^{u r}\right)^{\delta} & =\{r: \delta(r)=0\} \quad \delta(r)=\frac{\phi(r)-r^{p}}{p} \\
& =\text { Monoid of roots of unity } \\
& :=M
\end{aligned}
$$

$$
\operatorname{DI}_{0}(\delta)=0 \Longrightarrow \exists X_{1}^{\prime} / M_{1} \text { such that } X_{1}^{\prime} \otimes_{M} \widehat{\mathbb{Z}}_{p}^{u r} / p^{2} \cong X
$$

