
Introduction to p-Jet Spaces

Taylor Dupuy

Abstract

A quick introduction to p-jet spaces. I am going to add more to this and these notes are crude but
I’ve made them available for people trying to learn about p-jets.
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1 p-derivations

1.1 p-derivations

Let A and B be rings, with B an A-algebra. A p-derivation δp : A → B is a map of sets satisfying the
following axioms

δp(a+ b) = δp(a) + δp(b) + Cp(a, b)

δp(ab) = δp(a)b
p + apδp(b) + pδp(a)δp(b)

δp(1) = 0

Cp(x, y) =
xp + yp − (x+ y)p

p
∈ Z[x, y]

The category of rings with p-derivations is called the category of Λp-rings.

1.2 examples

Let A be a ring and a ∈ A. Recall that we have a well-defined morphism[
1

a

]
: aA→ A/ann(a).

Example 1.1. δ : Z/p2 → Z/p given by δ(x) = (x− xp)/p where we interpret 1/p as a map

1

p
: pZ/p2 → Z/p.
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Example 1.2. If R = Wp,∞(k) with k perfect of characterisic p then R has a unique lift of the Frobenius φ
on it. It hence has a unique p-derivation δ(x) = (φ(x)− xp)/p.

Theorem 1.3. Let R = Wp,∞(k) where k is a perfect field of characteristic p.

1. δp(p
n) = pn−pnp

p = pn−1 · unit

2. δp(p
n · unit) = pn−1 · unit

3. (pn, δp(p
n), δ2p(p

n), . . . , δr(pn))R = (pn−r)R

Proof. The first property is trivial. The second property follows from the computation

δp(p
s · u) − δp(p

s)up + pspδp(u) + pδp(p
s)δp(u)

= ps−1 · up + pspδp(u) + ps · unit · δp(u)
= ps−1(unit + p · junk).

We prove the last property by induction on r. It is sufficient to show that δrp(p
n) = pn−r · unit. We have

δp(δ
r−1
p (pn)) = δp(p

n−r+1 · unit) = pn−r · unit,

where the first equality follows from inductive hypothesis and the second equality follows from the second
proposition.

1.3 First p-jet ring

Define (−)p,1 : CRing→ CRing by
Ap,1 = A[ȧ : a ∈ A]/(relations)

where (relations) are generated by

˙(ab+ c) = ȧbp + apḃ+ p(̇a)(̇b) + (̇c) + Cp(ab, c),

Cp(x, y) =
xp + yp − (x+ y)p

p
∈ Z[x, y],

For all a, b, c ∈ A.

Remark 1.4. If A is an R-algebra and R admits multiple p-derivations we may want to impose that the
p-derivation on A extend the one on the base. Suppose δ0 : R → R is such a p-derivation on the base. The
additional relation we impose is then ṙ = δ0(r) where of course these are understood to be taken as an image
in A.

In this relative setting we could write (A/R, δ0)p,1 in place of Ap,1.

Example 1.5. A/R is finite type,

A = R[x1, . . . , xn]/(f1, . . . , fr) = R[x]/(f)

where x = (x1, . . . , xn) , f = (f1, . . . , fr) then

Ap,1 = R[x, ẋ]/(f, ḟ)

where ẋ = (ẋ1, . . . , ẋn) and ḟ = (ḟ1, . . . , ḟr). Here (̇f1), . . . , (̇fr) ∈ R[x, ẋ] are computing using the rule for
linear combinations above.
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Theorem 1.6 (Universal Property). There is a universal p-derivation δp,1 : A → Ap,1 mapping a to ȧ. It
satisfies the following universal property:

For every p-derivation δ : A → B of the ring homomorphism A → B there exists a unique ring homo-
morphism uδ : Ap,1 → B such that

A
δ //

δp,1 !!CC
CC

CC
CC

B

Ap,1

OO .

The ring homomorphism is the morphism of A-algebras defined by uδ(ȧ) = δ(a). 1

Proof. It is clear the the morphism is well-defined from the definitions.

1.4 Data of p-derivations

Lemma 1.7 (flatness over witt vectors= p-torsion free). Let A be an R = Wp,∞(k) algebra with k-perfect
of characteristic p. The following are equivalent

1. A is flat over R

2. The multiplication by p morphism is injective.

3. A is p-torsion free

Proof. It is clear the (2) and (3) are the same. We will show p-torsion free implies flat. Flatness is equivalent
to I ⊗R A → IA given by i ⊗R a 7→ ia is injective. We have I = mn for some m where m = (p) is
the maximal ideal of R. A general element of mn ⊗ A looks like

∑
i p

n′+ni ⊗ ai with n′ be the the gcd

of all of the pn
′+ni where we can assume wlog that ai’s are not divisible by any powers of p. Suppose∑

i p
n′+ni ⊗ ai 7→ pn

′
(
∑

i p
niai) = 0. Since multplication by p is injective we have

∑
i p

niai = 0. This is a
contradiction since

∑
i p

niai was cooked up to be a unit.
We will show that flatness implies p-torsion free. We prove the converse by contrapositive: If it is not

p-torsion free it will not be flat. Suppose that multiplication by p is not injective on A. This means that the
map pR⊗R A→ pA is not an injection. This contradicts flatness.

Theorem 1.8. Let B ∈ CRingA, A ∈ CRingR where R = Wp,∞(k) and k is a perfect field of characteristic
p. Suppose that A and B are flat over R. The following data are equivalent.

1. A p-derivation δ : A→ B of the algebra map A→ B.

2. An action ρ : A → Wp,1(B) (meaning a morphism of rings such that (πp,1)B ◦ g) = f : A → B the
algebra map.

3. A morphism of A-algebras Ap,1 → B.

Proof. Follows from the definitions.

Example 1.9. Let A and B be rings over R = Wp,∞(k) with k perfect of characteristic p. Suppose p 6= 2 and
consider the diagram

Ap,1
u // B

A

OO

1Warning: The diagram is not a diagram in the categorical sense but it is an exercise to show that the universal property
can be formulated in terms of diagrams
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This induces A→ B.
If f : A→ B is already given and A = A/pn+1 then (A)p,1 = (A)p,1/p

n. This follows from the fact that

δ(pn) =
pn − pnp

p
= pn−1(1− pn(p−1))

when p is not a unit.
Hence we have a factorization

Ap,1
u // B

A

OO

π∗
p,1 // A/pn

OO

although f : A→ B may not factor through a reduction modulo pn in general.

Theorem 1.10. Let B be a p-torsion free ring and φ a lift of the Frobenius on B inducing a lift of the
Frobenius on An = B/pn+1. This then induces a well-defined p-derivation

δp : An → An−1.

Proof. In general, given any A and a lift of the Frobenius φ : A→ A, one can try to define

δp : A→ A/ann(p)

via

δp(a) = (

[
1

p

]
◦ g)(a)

where g(a) = φ(a)− ap, and g : A→ pA at least.
The difficulty in defining δp comes from the equality[

1

p

]
(g(a)g(b)) = p ·

[
1

p

]
(g(a)) ·

[
1

p

]
(g(b)) in A/ann(p).

We leave it to the reader to verify that this makes sense.
It is useful for the reader to note that if An = B/pn+1 where B is p-torsion free then

annA(p
j) ∼= pn−jA

A/annA(p
j) ∼= A/pn−j

These give maps [1/p] : pAn → An−1.

Theorem 1.11. Let A,B be flat over R. Suppose that A is of finite type over R. Let f : A → B be a
morphism of rings inducing the morphism of rings fn : An → Bn. The following are equivalent

1. A lift of the Frobenius φn : An → Bn,

φn(a) ≡ f0(a)
p mod p

2. A p-derivation δp : An → Bn−1

3. A morphism (Ap,1)n−1 → Bn−1 of An−1-algebras.

Proof. To see that 2 implies 1 note that φn(a) := ap + pδ(a) defines a lift of the Frobenius. We will show
that 3 and 2 are equivalent: Let A = R[x]/(f) so that (Ap,1)n = (R[x, ẋ]/(f, ḟ))/pn = Rn−1[x, ẋ]/(f, ḟ).
The map clearly defines a p-derivation. (Note: (δp,1)n : An → (Ap,1)n−1 is universal).

We will not show 1 implies 2: The follows from what we said previously about p-derivations.
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2 p-Jets

2.1 p-jet spaces and p-arc spaces as functors

Let X/R be a scheme where R = Wp,∞(k), with k perfect of characteristic p. define the rth p-jet functor
Jp,r(X) : CRing→ Set to be the functor of Wp,r valued points of X:

Jp,r(X)(A) := X(Wp,r(A)) A ∈ CRingR.

The natural morphism of ring schemes πr,s : Wp,r → Wp,s for r > s induce functorial morphisms
Jp,r(X)→ Jp,s(X). The morphisms πr : Wp,r → O induce functorial morphisms Jp,r(X)→ X.

Let X/R be a scheme and define Define the p-arc functor Jp(X) : CRing → Set to be the functor which
takes Wp,∞ valued points of a scheme:

Jp,∞(X)(A) := X(Wp,∞(A)) A ∈ CRingR.

Example 2.1. WhenX = Spec(A) andA is anR algebra withR = Wp,∞(k) where k is perfect of characteristic
p we have that Jp,1(X) is representable and

Jp,1(Spec(A)) = Spec(Ap,1)

as schemes over X.

Remark 2.2. Since the constuction A 7→ Ap,1 does not localize well one needs to work hard to get that p=jet
spaces are representable. In fact, it is an open problem as to whether p-arc spaces are representable.

Example 2.3. Let R = Wp,∞(k) where k is a perfect field of characteritic p. Let X = Spec(R[x]/(f)) (using
multi-index notation). There are no sections of the morphism of R-schemes

Jp,1(X)0 = Jp,1(X1)
πp,1 // X1

oo .

This would correspond to a map of rings

s∗ : R[x, ẋ]/(f, p2, ḟ , ˙(p2)) = R0[x, ẋ]/(f, ḟ)→ R1[x]/(f) = R[x]/(f, p2).

Theorem 2.4. Let X/R be an affine scheme which is flat over R (so that multiplication by p is injective).

1. The natural morphism πp,m,s : Jp,m(Xn)→ Jp,s(Xn) factors through reduction modulo pn−m+1,

Jp,m(X)n−m

(πp,r+s,s)n−r−s// Jp,s(X)n−m .

This is morphism of schemes over Rn−m.

2. Sections of the morphisms

Jp,1(X)m
πp,1 // Xns
oo

provide lifts of the Frobenius/p-derivations

δ : O(Xn+1)→ O(Xn) = O(Xn+1)/p.

Proof. Let X = Spec(R[x]/(f)) (using multi-index notation). The map πm,s gives a map of rings

R[x, ẋ, . . . , x(s)]/(f, ḟ , . . . , f (s)) = O(Jp,s(X))→ O(Jp,m(X)) = R[x, ẋ, . . . , x(m)]/(f, ḟ , . . . , f (m)).

The first part of the proposition follows from an explicit description of the ideals given previously and the
second part follows from the characterization of lifts of the Frobenius on rings of the form An = B/pn+1.
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Theorem 2.5. Let X/R be flat where R = Wp,∞(k) where k is perfect and characteristic k = p.

1. If i : U ↪→ X is an open immersion of affine R-schemes of finite type then

Jp,r(i)n : Jp,r(U)n ↪→ Jp,r(X)n

is an open immersion.

2. If j : Z ↪→ X is a closed immersion of affine R-schemes of finite type then

Jp,r(j) : Jp,r(Z) ↪→ Jp,r(X)

is also a closed immersion.

Proof. Let X = Spec(A) with A = R[x]/(f) (using multi-index notation). It is enough to show that the
functor Jp,r()n respects principal open immersions.

(Ap,1)g = (R[x, ẋ]/(f, ḟ))g

(Ag)p,1 − R[x, ẋ, 1/g ˙(1/g)]/(f, ḟ)]

= R[x, ẋ, 1/g,
−ġ
g2p

∑
j≥0

(
pġ

gp

)j

]/(f, ḟ)

so we clearly have
(Ap,1)g ↪→ (Ag)p,1.

Reducing modulo pn+1 gives

−ġ
g2p

∑
j≥0

(
−pġ
gp

)j

∈ ((Ap,1)g)n.

This shows
((Ap,1)g)n = ((Ag)p,1)n.

For the second part

X = SpecR[x]/(f), Jp,1(X) = SpecR[x, ẋ]/(f, ḟ)

Z = SpecR[x]/(f, g) Jp,1(X) = SpecR[x, ẋ]/(f, g, ḟ , ġ)

and it is clear that ḟ and ġ give extra elements of the ideal.

The above proposition implies that Jp,r(Y )n = (π−1
p,r)n(Yn) if Y ↪→ X is an open or closed immersion of

R-schemes when X is flat.

2.2 p-jets as schemes

Theorem 2.6 (Buium). Let R = Wp,∞(k) where k is perfect of characteristic p.

1. Let X/R be a flat scheme. The functor Jp,r(X) := X ◦Wp,r over X, is representable when reduced
modulo p for every n,

2. Furthermore for every A in CRingRn
we have

Jp,r(X)n(A) = Jp,r(X)(A) = X(Wp,r(A))→ X(A) = Xn(A)

where the map is (πp,r)A.
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Proof. It is enough to show that Jp,r(X)n is a sheaf on the Zariski site.

Let (Ui → X) be a Zariski open cover. Let Ũijk, Ũkij , Ũjki denote Uijk viewed as an open subscheme of

Ui, Uj and Uj repsectively. Let Ũij , Ũji be Uij viewed as an open subscheme of Ui and Uj respectively and
let αij be the isomorphism between the two. we have the diagram

Ui Uj Uk

Uij

``AAAAAAAA

=={{{{{{{{
Ujk

>>||||||||

aaDDDDDDDD

Uijk

aaCCCCCCCC

==zzzzzzzz

.

We have αijαjk = αki where αij : Jp,r(Ũijk)→ Jp,r(Ũijk).
Since Jp,r(−)n preserves open immersions, we have that Jp,r(−)n gives a diagram satisfying the cocycle

condition.
This tells us that morphism patch and that Jp,r(X)n an be viewed as a sheaf in the Zariski topology.

A more difficult theorem of Borger proves the following:

Theorem 2.7 (Borger). Let X/R be a scheme and R = Wp,∞(k) with k perfect of characteristic p. The
functor Jp,r(X) := X ◦Wp,r is representable.

2.3 Various limits of the of p-jet construction

The construction gives a system of maps

...

��

...

��
· · · // Jp,r(X)n //

��

Jp,r(X)n−1
//

��

· · ·

· · · // Jp,r−1(X)n //

��

Jp,r−1(X)n−1
//

��

· · ·

...
...

One can define the following limits

Ĵp,r(X) := lim−→Jp,r(X)n (Buium’s p-formal models)

Jp,∞(X)n := lim←−
r

Jp,r(X)n

̂Jp,∞(X) := lim−→
n

Jp,∞(X)n

Ĵp,∞(X) := lim←−
r

Ĵp,r(X)

These exist as Ind-schemes and it is not clear that any of the are representable in the category of schemes.
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Remark 2.8. 1. The p-formal schemes Ĵp,r(X) used by Buium behave nicely. In some sense this means
that the appropriate place for p-jet spaces would be some variant of the p-adic rigid analytic spaces.
No such study of p-jet spaces as rigid analytic objects has been undertaken to our knowledge.

2. We do not understand if Jp,∞(X)n is representable in the sense. We do not know if Jp,∞(X) exists,
hence if the reduction of the limits equals to limit of the reductions. The also implies that we don’t

know if Ĵp,∞(X) = ̂Jp,∞(X) since the conjectured scheme we are completing on the right hand side is
not known to exist.

3. Buiums’s p-jet spaces the p-adic completion of Borger’s jet spaces in the following sense: Jp,r(X) ⊗R

Rn
∼= Jp,r(X)n and Ĵp,r(X) = ̂Jp,r(X) when X/R is of finite type.

2.4 examples
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