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Abstract. In 1924 Szegö showed that the zeros of normalized partials sums
of the exponential function sn[es](nz) accumulate on a curve, now called the
Szegö curve. Specifically, he showed that a point is an accumulation point for
the zeros of sn[es](nz) as n →∞ if and only if the point is on the Szegö curve.
The present paper derives large n asymptotics for the error term for the partial
sums (using the methods of steepest descent) which allows one to discuss how
these roots approach the Szegö curve. In the present paper we derive these
results for the exponential function using the method of steepest descent. The
method used generalizes to several other functions.

1. Introduction to Finding Zeros of Partial Sums of Taylor Series

The nth order Taylor approximant of a function, sn[f ](z), has at most n roots.
In the case of the exponential function, the nth partial sum is

(1.1) sn[es](z) = 1 + z +
z2

2!
+ · · ·+ zn

n!
.1

Since the actual function ez has no roots and the partial sum sn[es](z) has n roots,
where do these roots go as n →∞? We’ve plotted the zeros of the 10th, 20th, 30th,
and 40th degree partial sum for the exponential function in figure 1. As is easily
observed from the picture the roots ‘fly of to infinity’ as n → ∞. The asymptotic
behavior of the roots of partial sums for the exponential function was a problem
which was first studied by Szegö (1924) [18].2 Szegö considered the behavior of
the roots of the normalized partial sums sn[es](nz). He showed that the roots of

Key words and phrases. Steepest Descent, Szegö Curve, Partial Sums, Complex Analysis,
Asymptotic Analysis.
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1We denote the nth partial sum by sn[f(s)](z) or sn[f ](z). The ‘s’ in ‘[f(s)]’ is a dummy

variable. The operator notation allows one to write expressions like sn[(es + ees
)/Γ(s)](z) easier.

2Much of the theory that Szegö, Polya and others used in their asymptotic analysis was devel-
oped much earlier by Alexander and others. The paper [1] provides a good starting point for a
discussion of the history of these methods. Also, a proof that these roots became unbounded as
n →∞ was established first by Eneström [6] and later independently by Kayeya [11] as a corollary
of the famous Eneström-Kayeya theorem. Since Eneström and Kayeya, much progress has been
made on inequalities for roots of polynomials. The reader is referred to [8], as it is an excellent
resource for polynomial inequalities.
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Figure 1. Each of the concentric rings correspond to a Taylor
polynomial of varying degree; The ring of roots for the higher order
polynomials are farther out than the ring of roots for polynomials
of lower degree.

sn[es](nz) accumulate on a the so called Szegö curve given by the equation3

(1.2) D∞ =
{
ζ ∈ C |

∣∣e−ζ+1ζ
∣∣ = 1 and |ζ| ≤ 1

}
.

In the 1924 paper, Szegö also considered the roots of the partial sums for the partial
sums for sine and cosine functions and showed their accumulation curves as well.
(see figure 2).

The question of rate of convergence is discussed in an early paper by Buckholtz
[3].

Definition 1.1. For two sets A and B the distance function

(1.3) dh(A,B) := min
{

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
}

is the minimal hausdorff distance and the distance function

(1.4) dH(A, B) := max
{

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
}

is the maximal hausdorff distance.

If we let

(1.5) Rn[es] = Rn = {z ∈ C |sn[es](nz) = 0}
Buckholtz showed

(1.6) dh(Rn, D∞) ≤ 2e√
n

,

3Following the notation of Varga et al
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Figure 2. These are the roots of the Taylor Approximations for
the Cosine function. As we see in the above function, some of the
roots tend to the actual roots of the cosine function which occur
at at nπ

2 for n ∈ Z.

as for all n.
This estimate was improved in 1991 a paper by Varga, Carpenter and Waldvogal

[20].4

Proposition 1.2. For all δ > 0 there exists some C ∈ R+ such that for all n

(1.7) dh(Rn\Bδ(1), D∞) ≤ C
log(n)

n
.

Or in big ‘oh’ notation

(1.8) dh(Rn\Bδ(1), D∞) = O

(
log(n)

n

)

as n →∞.

This says if one considers the roots away from the point 1 ∈ D∞ then roots
approach the curve like log(n)/n uniformly.

In the same paper they introduced a family of contours
(1.9)

Dn =

{
z ∈ C | n!en

√
2πn

nn

∣∣∣∣
1− z

z

∣∣∣∣ , |z| < 1, arg(z) = arccos(
n− 2

2
),−π ≤ arg(z) ≤ π

}
,

which have the property that Dn → D∞ as n → ∞. Using these contours and
made the following improvement on the location of the roots:

Proposition 1.3. For all δ > 0

(1.10) dh(Rn\Bδ(1), Dn) = O

(
1
n2

)

as n →∞.

4If the reader is unfamiliar with big ‘oh’ notation they may jump to section 3 for a definition.



4 TAYLOR DUPUY ADVISOR: KENNETH D-T MCLAUGHLIN

Figure 3 shows these curves.
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Figure 3. Dynamic Szegö curves for R10, R15, and R20.

Remark 1.4. The actual papers of Buckholtz, Saff and Varga et al do not use dh

and use a sup inf distance between a finite set of points P and the contour C.

d(P, C) := max {d∞(p, C) |p ∈ P } ,

where
d∞(p, C) := min {|p− c| |c ∈ C } .

It is easy to show that d and dh give the same values for distances between a finite
set of points and a contour C and we prefer dh only because it’s commutative.
Further because the points accumulate on D∞ this implies converges in dH as well.

The results on the exponential function then extended in a paper by Kappert[12]
where he calculated the “dynamic Szegö curves” for trigonometric functions. A
series of papers by Varga et al. [14], [15], [16] give the asymptotics for the zeros
and poles of Padé approximations to ez, as well as inversitgate number theoretic
properties for the zeros of the partial sums of the Taylor Series. A good review of
Szegö’s original method is given in [15].

Since Szegö numerous papers have been published generalizing his results his
ideas to a rich family of limiting rational functions including Laurent Series [5],
Cesaro Sums [17], Gauss hypergeometric polynomials [10], special orthogonal and
combinatorial polynomials: Legendre Polynomials, Laguerre Polynomials [2], Eu-
ler Polynomials [21], Chebyshev Polynomials [7], Jacobi Polynomials [4], Hermite
Polynomials [9], Fabor polynomials [13], as well as a class of polynomials related to
Daubechies Wavelets [19]. In addition studies of particular properties such as root
density have been studied [8] [22].

In the present paper we apply the method of steepest descent to obtain these
results as it yields to generalization for other functions easier.

2. The Integral Representation of the Taylor Series

We first require the Cauchy Integral Formula.

Theorem 2.1 (Cauchy Integral Formula). If γ is a simple closed curve, z ∈ γ+,
and f is analytic in a region containing γ and its interior then

(2.1) f(z) =
1

2πi

∫

γ

f(s)
s− z

ds.

From the Cauchy integral formula we may derive Taylor’s Theorem.
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Theorem 2.2 (Taylor’s Theorem for Complex Variables). If A is an open set,
f : A ⊂ C→ C analytic, and z0 ∈ A, Then ∃R > 0, ∀z ∈ A

(2.2) |z − z0| < R =⇒ f(z) =
∞∑

k=0

f (k)(z0)
k!

(z − z0)k.

The number R is the radius of convergence of the series; R is the supremum of all
radii r for which the sequence converges whenever z ∈ {z| |z − z0| < r}.

Also, If γ ⊂ A is a closed curve,γ+ ⊂ A and z0 ∈ γ+, then the partial sum of
equation 2.2 can has the representation

(2.3) sn[f ](z) =
1

2πi

∫

γ

f(s)
(s− z)

− 1
2πi

∫

γ

f(s)
(s− z)

(
z − z0

s− z0

)n+1

ds.

Note that in equation 2.3, the contour only has to contain z0 and that there is
no restriction on z; formula 2.3 is valid for all z! Introducing γ is only a result of
an application of the Cauchy integral formula for derivatives in equation 2.2 and
has nothing to do with the chosen z.

Equation (2.3) yields useful expression of the error term of Taylor polynomials.
For z ∈ γ+ one has

(2.4) f(z)− sn[f ; z0](z) =
1

2πi

∫

γ

f(s)
(s− z)

(
z − z0

s− z0

)n+1

ds.

Similarly z ∈ γ− gives

(2.5) sn[f ; z0](z) =
−1
2πi

∫

γ

f(s)
(s− z)

(
z − z0

s− z0

)n+1

ds.

We will use these expressions for the error terms later.

3. Asymptotics

In this section we introduce the necessary theory for deriving an asymptotic
expansion for the integral

(3.1)
−1
2πi

∫

γ

f(s)
(s− z)

(
z − z0

s− z0

)n+1

ds

which is valid for large n. To do this we will apply the method of steepest descent,
which we will state at the end of this section.5

We first must recall some basic notions used in Asymptotic Analysis.

Definition 3.1. Big ‘oh’ notation: A function f is said to be big ‘oh’ of
g in the sector α < arg(z) < β where α, β ∈ R provided ∃C ∈ R+,∃M ∈
R+, ∀z ∈ C

(3.2) |z| ≥ M and α ≤ arg(z) ≤ β =⇒ |f(z)| ≤ C|g(z)|.
We write f(z) = O(g(z)) as z →∞.

5A proof can be found at http://www.u.arizona.edu/ tdupuy or in a less general form in the
internet supplement for Basic Complex Analysis by Marsden and Hoffman.
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Little ‘oh’ notation: A function f is said to be little ‘oh’ of g in the sector
α < arg(z) < β where α, β ∈ R provided ∀ε > 0, ∃R ∈ R+,∀z ∈ C

(3.3) |z| ≥ R and α ≤ arg(z) ≤ β =⇒ |f(z)| ≤ ε|g(z)|.
We write f(z) = o(g(z)) as z →∞.

Note that f(z)− g(z) = o(1) means limz→∞ |f(z)− g(z)| = 0.

Definition 3.2. For two functions f and g, we say f is asymptotic to g if f(z) =
g(z)(1 + o(1)) as z →∞. Stated in more basic terms, ∀ε,∃R ∈ R+ such that

(3.4) |x| ≥ R =⇒ |f(x)− g(x)|
|g(x)| < ε.

We write f ∼ g as z →∞.

Note that f ∼ g is an equivalence relation. We have a similar definition for
asymptotic series.

Definition 3.3. f is asymptotic to the series Sn(z) = a0 + a1
z + · · ·+ an

zn , or Sn(z)
is an asymptotic series for f if ∀n ∈ N

(3.5) f(z)− Sn(z) = o

(
1
zn

)
.

We write

(3.6) f(z) ∼ a0 +
a1

z
+

a2

z2
+ · · ·

as z →∞.

Note that the above definition requires a function to have a limit as z → ∞,
namely f(z) → a0 as z → ∞. In order for the definition to apply at all it must
have a limit! This may seem rather restrictive but was developed exactly for the
purpose of obtaining more information about convergence:

If f(z) → A as z → z0 we know that

lim
z0→z

f(z)−A = 0 and lim
z→z0

(z − z0) = 0 gives lim
z→z0

(f(z)−A)
(z − z0)

= B.

Repeating this process of multiplying something which vanishes by something that
blows up allows us to get more limits

lim
z→z0

lim
z→z0

(f(z)−A)
(z − z0)

−B = 0 and lim
z→z0

(z − z0) = 0 gives lim
z→z0

(f(z)−A)
(z−z0)

−B

(z − z0)
= C.

Unraveling the last couple of steps gives

lim
z→z0

f(z) = lim
z→z0

A + B(z − z0) + C(z − z0)2.

Asymptotic series are unique, you can add them, you can multiply them and it
is possible for two different functions to have the same series.

In order to extend the definition we consider expressions of the form

g(z)
(
a0 +

a1

z
+

a2

z2
+ · · ·

)
.

Where f(z)
g(z) → a0.
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Definition 3.4. f has the asymptotic expansion g(z)
(
a0 + a1

z + a2
z2 + · · · ) if

(3.7) f(z) = g(z)
(

a0 +
a1

z
+

a2

z2
+ · · ·+ an

zn
+ o

(
1
zn

))
.

We write

(3.8) f(z) ∼ g(z)
(
a0 +

a1

z
+

a2

z2
+ · · ·

)
,

as z →∞.

Note that this definition corresponds to definition 3.2.

Theorem 3.5 (Steepest Descent). Let γ : [a, b] → C be a piecewise C1 curve. Let
h be continuous along γ, g be a function which is continuous and bounded along γ,
ζ0 = γ(t0) be a critical point of h on γ with g analytic at ζ0 and g(ζ0) 6= 0.

Also let the following conditions hold when |z| ≥ R and arg(z) is fixed:

(1)
∫

γ
ezh(ζ)g(ζ)dζ < ∞.

(2) Re(h) has a maximum on γ at ζ0.
(3) Im(h) = Im(ζ0) in a neighborhood of ζ0.

Provided all of the above conditions have been satisfied the function

(3.9) F (z) =
∫

γ

ezh(ζ)g(ζ)dζ

has the asymptotic expansion

(3.10) F (z) ∼ ezh(ζ0)

√
2π√
z

(
a0 +

a2

z
+

a4 · 1 · 3
z2

+
a6 · 1 · 3 · 5

z3

)

as z →∞ and arg(z) fixed. (An explanation of these terms and a simplification of
this expression is given in the remark below.)

Upon factoring out a0 of the expansion in 3.10 we get

(3.11) F (z) ∼ ezh(ζ0)

√
2π√
z

g(ζ0)√
−h′′(ζ0)

(
1 +

A1

z
+

A2

z2
+ · · ·

)
.

The sign of the square roots are chosen so that
√

z
√
−h′′(ζ0) · γ′(t0) > 0.

Remark 3.6. In the derivation of formula 3.10 one defines a function w implicitly
by

h(ζ) = h(ζ0) + [w(ζ)]2.

The function w which is shown to be locally one-to-one and analytic. Using the
inverse function theorem, the terms a0, a1, a2 · · · are the coefficients of a Taylor
series for a function

(3.12) G(y) :=
√

z · g(ζ) · w′(ζ)

centered at ζ0 where y =
√

zw(ζ). One can see that the Taylor series for G centered
at zero corresponds to the expansion of

√
z ·g(ζ)·w′(ζ) centered at ζ0 since w−1(0) =

ζ0.
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4. Application of the steepest descent method to the integral
representation of the partial sums

The analysis of the partial sums begins with equation 2.4:

sn[es](z) =
1

2πi

∫

γ

es

s− z
ds− 1

2πi

∫

γ

es

s− z

(z

s

)n+1

ds.

Denote the error for the partial sum of the Taylor series by En(z) (c.f. (2.4)):

(4.1) En(z) =
1

2πi

∫

γ

es

s− z

(z

s

)n+1

ds.

The analysis will proceed as follows:

(1) Normalize the partial sums of ez by some parameter λn so that the zeros
of the partial sums do not diverge as n →∞ (Eneström-Kayeya theorem).
One considers the normalized partial sums sn[es](λnz) in order to fix the
zeros.

(2) Get En(λnz) as given by 4.1 into steepest decent form in order to derive
large n asymptotics. This is done by using algebra to get the integral into
steepest decent form 3.9.

(3) Next, choose a contour for the integral that satisfies the steepest descent
conditions found in theorem 3.5.

(4) Apply steepest descent to yield the asymptotic expansion.

4.1. Normalization of the partial sums. In figure 4 we have displayed the roots
of the function ez for the 10th, 20th, 30th, and 40th Taylor polynomials. If we let
Mn = max {|z| | sn[es](z) = 0}, As seen from figure 4, Mn →∞ as n →∞. So we
want to find λn ∈ R, a sequence of numbers, such that all the zeros of sn[es](λnz)
lie don’t diverge. The polynomials sn[es](λnz) are called the normalized partial
sums of the Taylor series.6 Again we note that if Z is a zero of nth partial sum,
sn[es](Z) = 0, then Z/λn is the zero in the normalized partial sum.

Thus we have

(4.2) sn[es](λnz) =
1

2πi

∫

γ

es

s− λnz
ds− 1

2πi

∫

γ

es

s− λnz

(
λnz

s

)n+1

ds.

Let us turn our attention to the error of the approximating series.

(4.3) En(λnz) =
1

2πi

∫

γ

es

s− λnz

(
λnz

s

)n+1

ds.

4.2. Placing the integral representation in steepest descent form. As stated
in the summary, we change the variable of integration to s = λnζ:

En(λnz) =
zn+1

2πi

∫

γ

eλnζ

ζ − z

(
1
ζ

)n+1

dζ.

Remark 4.1. Recall that as this point γ is arbitrary. γ will will be chosen later so
that it will be a fixed curve in the re-scaled variables.

6the business of finding a normalization λn is not essential to the problem but rather provides
motivation for seeking a normalization in the first place
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Figure 4. These are the roots of the 10th, 20th, 30th, and 40th
degree appoximation for ez

(4.4) En(λnz) =
∫

γ

eλnζ−n log ζ

ζ − z

1
ζ
dζ.

Setting λn = n places the integral in steepest descent form 3.9:

(4.5) En(λnz) =
∫

γ

en(ζ−Log ζ) · 1
(ζ − z)ζ

dζ =
∫

γ

enh(ζ)g(ζ)dζ.

where h(ζ) = ζ − Log(ζ) and g(ζ) = g(ζ, z) = 1
(ζ−z)ζ .

4.3. Contours Which Satisfy the Steepest Descent Conditions. We now
choose a contour that satisfies the conditions in theorem 3.5.

There is one critical point at ζ0 = 1.
In order for the contour γ to have steepest descent form one must satisfies the

conditions given in theorem 3.5. This means γ must pass through the critical point
ζ0 = 1, have Im(h(γ)) = Im(h(1)) = 0 in a region around 1 and achieve a maximum
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for Re(h(γ)) at 1.7

(4.6) Im[ζ − Log(ζ)] = y −Arg(z) = 0

Thus, in order to satisfy the conditions in theorem 3.5, near 1, γ must be given by

(4.7) γim = {x + iy ∈ C | y −Arg(z) = 0} =
{

sin(θ)
θ

eiθ|θ ∈ (−π, π]
}

.

Figure 5 shows a plot of this contour.
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Figure 5. Along this contour we find that, h(ζ) achieves a maxi-
mum in the real component. And keeps the imaginary part con-
stant.

Similarly, because Re(h) must achieve a maximum we consider the contour which
holds the real value of h(z) equal to one along it. This is the contour

(4.8) γre = {x + iy ∈ C | x− ln |z| = 1} = {x + iy|y2 = (e1−x)2 − x2}.
A plot of this contour is shown in figure 6. Notice that the values for γre are greater
on the interior of the contour. Figure 7 displays both γre and γim.

The steepest descent conditions are satisfied by any closed contour γ which is
locally γim around 1, i.e. there exists some δ > 0 such that γ∩Bδ(1) ≡ γim∩Bδ(1),
and does not pass through γre, i.e. γ ⊂ γ+ (where the orientation is for γre is
determined by traversing the curve counter clockwise as usual).

For any such γ, Re[h(γ)] achieves a maximum at ζ0 = 1 and is locally identical
to γim at ζ0 = 1.

7In a more general context your h(ζ) may have more than one critical point. If this happens
you may break γ up into smaller curves and apply steepest descent to each segment. Since
asymptotic expansions are additive, the sum of the resulting expansions will give and expansion
for the integral.
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Figure 6. Above is the plot for γre. The lighter regions indicate
larger values of Re[h]. From this picture one can see that all z
located on the interior of γre, have larger Re[h] values than any z′

in the exterior of the contour.
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Figure 7. A picture of both the contours Re[h] = 1 and Im[h] = 0
which intersect at the critical point ζ0 = 1

Proposition 4.2. Let

(4.9) γ̃re = {ζ ∈ γre|Re(ζ) < 1}.
For all simple closed C1 curves γ such that there exists some δ > 0 satisfying
Bδ(1) ∩ γ ≡ Bδ(1) ∩ γim and (γ\Bδ(1)) ⊂ γ̃−re places the integral

(4.10) En(nz) =
1

2πi

∫

γ

en(ζ−log ζ) · 1
(ζ − z)ζ

dζ

in Steepest Descent form (c.f (3.9)).
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4.4. Asymptotics Behavior of the Error Term.

Corollary 4.3 (Asymptotics for the Error Term). Provided the conditions for γ
in proposition 4.2 are met

(4.11) En[es](nz) =
ienzn+1

√
2πn(1− z)

(
1 + O

(
1
z

))

as n →∞.

In figure 8 we’ve plotted the roots of the 40th degree normalized partial sum
with the real contour γre.

We now record the following interesting fact:

Proposition 4.4 (Szegö Curve). The contour γ̃re (see equation (4.8)) is the the
Szegö curve D∞ (see equation (1.2)).

4.5. Rouche’s Theorem and Its Application. In this section we first show that
the roots of the nth normalized partial sum of the exponential function lie in the
interior of any valid steepest descent contour for large enough n. Further show that
the roots lie just outside the contour γre (see figure 8). We do this using what we
know about the steepest descent contour from proposition 4.2 and the following
lemma.

-0.5 -0.25 0.25 0.5 0.75 1
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1

Figure 8. Here are the roots of the 40th degree approximant of
the exponential function in the normalized plane (The roots are
divided by 40). The contour in the picture is γre, the Szegö curve
(Also called D∞—but proved to be the same curve by proposition
proposition 4.4.

Lemma 4.5 (Rouche’s Theorem). Let f and g be analytic functions defined on the
interior of a region A. Let γ be a simple closed curve where for all z ∈ γ, if z is
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not a root or a pole of f and z is not a root or a pole of g and |f(z)−g(z)| < |f(z)|
for all z on γ. Then

(4.12) Zg − Pg = Zf − Pf

where Z and P are the number of zeros and poles contained γ+.

Proof. Define

(4.13) h(z) =
g(z)
f(z)

.

Since |h(z)− 1| < 1 for all z on γ, the image of γ under h is contained entirely in a
unit disc centered at 1. This means that h is contained part of the complex plane
where the real part is greater than zero. This means function Log(h(z)) is analytic
can and be defined by

(4.14) Log(h(z)) = ln(|h(z)|) + i Arg(h(z)) = ln(r) + iθ

where h(z) = reiθ 6= 0 where we take the principle branch of the argument. By
antiderivatives we know

(4.15) 0 =
∫

γ

d

dz
Log(h(z))dz =

∫

γ

h′(z)
h(z)

dz =
∫

γ

f ′(z)
f(z)

dz −
∫

γ

g′(z)
g(z)

dz.

By the argument principle

(4.16) Zf − Pf = Zg − Pg

where Z and P denote the zeroes and poles of f and g respectively. This proves
our result. ¤

Theorem 4.6 (Exterior Bound). Let γ be any contour which satisfies the conditions
in proposition 4.2.
∀ closed curves α, ∃N ∈ N, ∀n ∈ N

(4.17) γ ⊂ α+ and n ≥ N =⇒ Rn[enz] ⊂ α+.

Proof. Let

(4.18)
ienzn+1

√
2πn(1− z)

= A(n, z).

For all nz = w ∈ γ−

(4.19) sn[es](nz) = A(n, z)
(

1 + O

(
1
n

))
.

By equation (4.11) and equation (2.5) the definition of ‘big oh’ there exists some
M ∈ R and there exists some N ∈ N
(4.20) n ≥ N =⇒ |sn[es](nz) + A(n, z)| ≤ |A(n, z)|M 1

n
< |A(n, z)| .

because ∀ε,∃N such that n ≥ N =⇒ M
n < ε we get

(4.21) |sn[es](nz) + A(n, z)| ≤ |A(n, z)| ε < |A(n, z)| .
We can now apply Rouche’s theorem to any contour α such that α+ ⊃ γ (This
condition on α preserves (4.21)). Since sn[es](nz) has n roots and A(n, z) has n+1
roots and one pole, we have {z ∈ C|sn[es](nz) = 0} ⊂ α+ whenever n ≥ N . ¤
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Corollary 4.7 (Convergence to the Szegö Curve). For all δ > 0 limn→∞ dH(D∞ \
Bδ, Rn \Bδ) = 0.

This is true because any steepest descent contour γ must satisfy γ ⊂ D−
∞ which

means dH(γ, D∞) > ε for some ε > 0. But we can just take a sequence of contours
which approach D∞. Take the first contour, which is say, ε away from D∞, and
increase n until the roots are in its interior. Now take the next contour, say ε/2
away, increase the n again until they fall inside. Repeat this until you are within
any distance you want of D∞.

Theorem 4.8 (Interior Bound). For each n, orient the curve

(4.22) Dn =
{

z ∈ C
∣∣∣∣|e1−zz|n =

√
2πn

|1− z|
|z|

}

in the counterclockwise direction. For all n, Rn[enz] ⊂ D−
n .

Proof. Take z ∈ γ+, where γ satisfies the steepest descent conditions. The integral
formula for Taylor approximants gives

(4.23) sn(nz) = enz − ienzn+1

√
2πn(1− z)

(
1 + O

(
1
n

))
.

Consider the set of z such that8

(4.24) |enz| =
∣∣∣∣

ienzn+1

√
2πn(1− z)

∣∣∣∣ .

For a fixed n this is the set

(4.25) Dn =
{

z ∈ C
∣∣∣∣|e1−zz|n =

√
2πn

|1− z|
|z|

}
.

For all z ∈ D+
n

(4.26)
∣∣∣∣
ienzn+1

(1− z)

∣∣∣∣ < |enz|.

Thus for all z ∈ D+
n

(4.27) |sn(nz)− enz| =
∣∣∣∣
ienzn+1

(1− z)

(
1 + O

(
1
n

))∣∣∣∣ <

∣∣∣∣
ienzn+1

(1− z)

∣∣∣∣ < | − enz|.

Thus for any curve α ⊂ D+
n the above condition holds and we may apply Rouche’s

theorem which tells us that there are no zeros inside the contour Dn. ¤

Corollary 4.9 (Convergence to the Family of Curves). For all δ > 0 limn→∞ dH(Dn\
Bδ, Rn \Bδ) = 0.

This result is easy to see since Dn → D∞: just let n be large enough to get
as close as you want to D∞. Then increase n again to get the roots within any
tolerance of D∞ (by prop 4.7) to get a bound on how close the roots will be.

8Here we are applying the same trick that we did for γre. We are going to make a contour
which gives us an inequality.
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Remark 4.10. The contours Dn were obtained by taking a first order approxima-
tion to the equation (4.23). If we would have instead obtained formulas using
higher order terms in the function “A(n, z)” we would have obtained more precise
lower9 bounds on the roots. Similarly, in (4.18) and (4.19), we could have taken
a higher order approximation which would have guaranteed a rate of convergence
like O(1/nk) for any k. The payoff is between the uniform bound M and the rate.

Also note that by additivity of asymptotic series it is each to obtain similar
results for the functions ezp

, cos(z), sin(z), cosh(z), sinh(z) and their variants.
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