
Quadratic Reciprocity

Taylor Dupuy

Throughout this note p and q will denote distinct odd primes. The Legen-
dre Symbol is given by

(
n

p

)
=

 1, n is a square modulo p
0, p|n
−1, otherwise

. (1)

Theorem 1 (Law of Quadratic Reciprocity). For p and q distinct odd primes
we have (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 mod p. (2)

The main point of this theorem is that p and q are “entangled” by this
extra relation. Most of the time in number theory one can treat primes as
uniformly distributed random variables (like in dirichlet’s theorem about the
equidistribution of the residue classes of primes p mod q). The Law of Quadratic
Reciprocity is an exception to this Heuristic and shows that there is is hidden
symmetry in the prime numbers.

The proof of the Law of Quadratic Reciprocity is interesting because we need
to go beyond viewing Z/p as an abstract group — the proof uses the ordering
of representatives of Z/p. Throughout this proof we will fix representatives

Z/p = {−p− 1

2
, . . . ,−1, 0, 1, . . . ,

p− 1

2
},

rather than the form {0, 1, . . . , p− 1} because in the previous form, we consider
the sign of certain numbers.

Lemma 1 (Euler). (
n

p

)
≡ n

p−1
2 mod p (3)

Proof. Our job is to show

n(p−1)/2 mod p ≡


1, n is a square modulo p

0, p|n
−1, otherwise

case 1 Suppose p|n. Then n
p−1
2 ≡ 0 is trivial.
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case 2 Suppose n ≡ x2 mod p. Then n
p−1
2 = xp−1 = 1 from Fermat’s Little

Theorem.

case 3 Suppose n is not a square mod p. We need two facts.

1. (p− 1)! ≡ −1 mod p (which holds generally)

2. (p− 1)! ≡ n(p−1)/2. (which holds when n is not a square)

First, Z/p is a field. We write out (p − 1)! and pairing inverses and get
(p − 1)! ≡

∏
c∈F×

p
c = −1, Since the only elements left over at the ones

which are there own inverses. But the only elements which are there own
inverses are -1 and 1 (The two roots of x2 = 1). 1

Consider pairs c, d such that cd = n mod p. Since Z/pZ is a field, for
every c there exists a unique d (since n is not a square mod p, there are
exactly (p − 1)/2 pairs {c, d} such that cd = n mod p, and that these
pairs partition Z/p. 2 This gives (p−1)! =

∏
cd=n c ·d = n(p−1)/2 mod p.

Consider the sets P = {1, 2, . . . , p−12 } and N = {−1,−2, . . . ,−p−1
2 } positive

and negative representatives of F×p .
Let’s let up(n) denote the number of elements of P that are sent to negative

representatives under multiplication by n ∈ F×p :

up(n) = #(nP ∩N) = # number of minus signs changes in nP (4)

We first claim that all the elements P appear in n ·P up to sign. To see this
note that two images under multiplication by n are equal up-to sign if and only
if he quotient of their images under multiplication by n is ±1 which will give a
contradiction—we write this out now: for x 6= y ∈ P we have

nx/ny ≡ ±1 =⇒ x/y ≡ ±1 =⇒ x ≡ ±y

which is impossible.

Lemma 2 (Gauss). (
n

p

)
= (−1)up(n). (5)

Proof. • Every element in P appears in nP up to sign.

1An alternative suggestion by someone in the class was to view F×
p as a cyclic group F×

p =

〈t〉 so that the product can be written as
∏p−1

j=0 tj = t
∑p−1

j=0 j
= tp(p−1)/2 = (tp)(p−1)/2 =

t(p−1)/2. It is clear that t(p−1)/2 is a root of the equation x2 ≡ 1 mod p. It is also clear that
t(p−1)/2 6= 1 mod p since t is the generator and (p−1)/2 is smaller than the group. — There
should be some natural generalization of this theorem to field extensions of Fp.

2If n is a square then there are exactly two numbers x such that x2 = n—one positive, one
negative.
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•
∏

x∈nP x ≡ (−1)up(n)
∏

x∈P x and we also have
∏

x∈nP x =
∏

x∈P nx ≡
n(p−1)/2

∏
x∈P x.

Lemma 3. 1. up(q) = #{(x, y) ∈ P ×Q : −p/2 < qx− py < 0}

2. up(q) is the number of lattice points between the lines y = (q/p)x and
y = (q/p)x+ 1/2.

Proof.

up(q) = #qP ∩N
= #{x ∈ P : ∃n ∈ N, qx ≡ n mod p}

∃n ∈ N, qx ≡ n mod p ⇐⇒ ∃y ∈ Z, qx− py ∈ N
⇐⇒ ∃y ∈ Z,−p/2 < qx− py < 0

So we have

#{x ∈ P : ∃n ∈ N, qx ≡ n mod p} = #{x ∈ P : ∃y ∈ Z,−p/2 < qx− py < 0}

If we show that if a y ∈ Q exists then it is unique (for a fixed x) we are done—
but changing y → y ± 1 changes qx− py by at least p which would violate the
bounds (since we only have p/2 room to move).

Since the line qx− py = 0 is equivalent to y = (q/p)x the lemma really tells
us that up(q) is simply the number of lattice points in P ×Q between the lines
y = qx/p and y = qx/p+ 1/2.

We are now in a position to attack the proof of the Law of Quadratic Reci-
procity. (

p

q

)(
q

p

)
= (−1)up(q)+uq(p)

by two applications of Gauss’ theorem. We show that

up(q) + uq(p) ≡ #P ×Q− some even crap

which will prove the theorem since #P ×Q = p−1
2 ·

q−1
2 .

First note by symmetry we have

uq(p) = #{(y, x) ∈ Q× P ;−q/2 < py − qx < 0}
= #{(x, y) ∈ P ×Q; 0 ≤ qx− py < q/2}

Which tells us

up(q) + uq(p) = #{(x, y) ∈ P ×Q;−p/2 < qx− py < 0 or 0 < qx− py < q/2}
= #{(x, y) ∈ P ×Q;−p/2 < qx− py < q/2}.
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On the second line we used the fact that the line y = (q/p)x has no lattice
points since q and p are coprime. So we up(q) + uq(p) counts the number of
lattice points between two parallel lines of slope q/p with y-intercepts 1/2 and
−(q/p)/2 respectively.

• Let T = {(x, y) ∈ P ×Q;−p/2 < qx − py < q/2} be the region bounded
by these two lines.

• Let A be the remaining portion of P ×Q above the top line.

• Let B be the remaining portion of P ×Q above the bottom line.

If #A = #B we are done since(
p

q

)(
q

p

)
= (−1)up(q)+uq(p) = (−1)#T = (−1)#P×Q−#A−#B = (−1)#P×Q

Lemma 4. If A = {(x, y) ∈ P ×Q; qx−py < −p/2} and B = {(x, y) ∈ P ×Q :
qx− py > q/2} then the map ρ : Z2 → Z2 defined by

ρ(x, y) = (
p+ 1

2
− x, q + 1

2
− y)

induces a bijection between the sets A and B with ρ(A) = B and ρ(B) = A. In
particular we have #A = #B.

Proof. Suppose that qx−py < −p/2 (i.e. (x, y) ∈ A then we claim that ρ(x, y) =
(x′, y′) is in B;

qx′ − py′ = q

(
p+ 1

2
− x
)
− p

(
q + 1

2
− y
)

= q/2− p/2− (qx− py)

> q/2− p/2 + p/2 = q/2.

This shows that ρ(A) ⊂ B. It is clear that ρ ◦ ρ is the identity. An argument
similar to the one above shows that ρ(x′, y′) is in A by showing qx′′−py′′ < −p/2
(if ρ(x′, y′) = (x′′, y′′)). This means that ρ(ρ(x′, y′)) = (x′, y′) which shows every
element of B is in the image of A and we have a bijection.
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