Derivatives

Dupuy—Math 150—Summer 2008

July 8, 2008

You're expected to think a little bit.

- 1. What is a derivative? How was it defined? (Use a couple of sentences.)
- 2. What are the rules for finding the derivatives of
 - (a) f(x) = a, where a is a constant.
 - (b) $f(x) = x^n$ where n is a natural number.
 - (c) f(x) = g(x) + h(x).
 - (d) $f(x) = a \cdot g(x)$ where a is a constant and g(x) is another function.
 - (e) f(x) = mx + b, where m and b are constants.
- 3. Compute the derivatives of the following functions:
 - (a) $f(x) = x^4 + x^3 + x^2 + x + 1$. (b) $g(x) = x^2 + 1$. (c) $h(x) = x^3 + 2x$. (d) $f(x) = (x^2 + 1)(x^3 + 2x)$. (e) $g(x) = (5x^4 + 2x^2)$ (f) h(x) = (x + 1). (g) $f(x) = (5x^4 + 2x^2)(x + 1)$ (h) $g(x) = x^4$ (i) $h(x) = x^3$ (j) $f(x) = x^7$.
- 4. In the above problems do you see a pattern with finding the derivatives of f(x) = g(x)h(x)? For this problem let f(x) = g(x)h(x) where $g(x) = x^2 + 1$ and $h(x) = 2x^3 + x$.
 - (a) Multiply out g(x)h(x) to get an expanded form of f(x).
 - (b) Compute f'(x).
 - (c) Compute g'(x).
 - (d) Compte h'(x).
 - (e) Verify that f'(x) = g'(x)h(x) + g(x)h(x).
- 5. The product rule is the following

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$
(1)

Prove this rule. Here are some hints: 1. Write out the difference quotient for F(x) = f(x)g(x), $(\Delta_h F)(x)$. 2. TRICK: Add 0 in the form of $0 = \frac{f(x+h)g(x)}{h} - \frac{f(x+h)g(x)}{h}$ to your difference quotient and then factor the result to look something like the above rule remembering that for any function G(x), $(\Delta_h G)(x)$ is really just G'(x) when we let h = 0.

- 6. Compute the derivative f(x) = g(x)h(x) using the product rule when
 - (a) g(x) = x, h(x) = 1.
 - (b) g(x) = x, h(x) = x.
 - (c) $g(x) = 3x + 1, h(x) = x^2 5$
 - (d) $g(x) = x^n$, $h(x) = x^m$ where n and m are natural numbers.
- 7. Try to find a rule for the derivative of $f(x) = x^{-n}$ where n is a natural number. Try doing some examples first.
- 8. Try to compute the derivative of $f(x) = x^{1/2}$. Recipe: Use the product rule on f(x)f(x) to get one side of the equation (i.e. (f(x)f(x))' = f'(x)f(x) + f(x)f'(x)). Then use the fact that f(x)f(x) = x along with out power rule (i.e. (f(x)f(x))' = (x)' = 1) to get the other side of the equation. Since we know $f(x) = x^{1/2}$ you can replace f(x) with $x^{1/2}$ where it appeared in the product rule. Finally, solve your equation for f'(x). Put this all together and state your result. Can you derive any other rules like this?