Derivatives

Dupuy-Math 150-Summer 2008

July 8, 2008

You're expected to think a little bit.

1. What is a derivative? How was it defined? (Use a couple of sentences.)
2. What are the rules for finding the derivatives of
(a) $f(x)=a$, where a is a constant.
(b) $f(x)=x^{n}$ where n is a natural number.
(c) $f(x)=g(x)+h(x)$.
(d) $f(x)=a \cdot g(x)$ where a is a constant and $g(x)$ is another function.
(e) $f(x)=m x+b$, where m and b are constants.
3. Compute the derivatives of the following functions:
(a) $f(x)=x^{4}+x^{3}+x^{2}+x+1$.
(b) $g(x)=x^{2}+1$.
(c) $h(x)=x^{3}+2 x$.
(d) $f(x)=\left(x^{2}+1\right)\left(x^{3}+2 x\right)$.
(e) $g(x)=\left(5 x^{4}+2 x^{2}\right)$
(f) $h(x)=(x+1)$.
(g) $f(x)=\left(5 x^{4}+2 x^{2}\right)(x+1)$
(h) $g(x)=x^{4}$
(i) $h(x)=x^{3}$
(j) $f(x)=x^{7}$.
4. In the above problems do you see a pattern with finding the derivatives of $f(x)=g(x) h(x)$? For this problem let $f(x)=g(x) h(x)$ where $g(x)=x^{2}+1$ and $h(x)=2 x^{3}+x$.
(a) Multiply out $g(x) h(x)$ to get an expanded form of $f(x)$.
(b) Compute $f^{\prime}(x)$.
(c) Compute $g^{\prime}(x)$.
(d) Compte $h^{\prime}(x)$.
(e) Verify that $f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h(x)$.
5. The product rule is the following

$$
\begin{equation*}
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) . \tag{1}
\end{equation*}
$$

Prove this rule. Here are some hints: 1. Write out the difference quotient for $F(x)=f(x) g(x)$, $\left(\Delta_{h} F\right)(x)$. 2. TRICK: Add 0 in the form of $0=\frac{f(x+h) g(x)}{h}-\frac{f(x+h) g(x)}{h}$ to your difference quotient and then factor the result to look something like the above rule remembering that for any function $G(x),\left(\Delta_{h} G\right)(x)$ is really just $G^{\prime}(x)$ when we let $h=0$.
6. Compute the derivative $f(x)=g(x) h(x)$ using the product rule when
(a) $g(x)=x, h(x)=1$.
(b) $g(x)=x, h(x)=x$.
(c) $g(x)=3 x+1, h(x)=x^{2}-5$
(d) $g(x)=x^{n}, h(x)=x^{m}$ where n and m are natural numbers.
7. Try to find a rule for the derivative of $f(x)=x^{-n}$ where n is a natural number. Try doing some examples first.
8. Try to compute the derivative of $f(x)=x^{1 / 2}$. Recipe: Use the product rule on $f(x) f(x)$ to get one side of the equation (i.e. $\left.(f(x) f(x))^{\prime}=f^{\prime}(x) f(x)+f(x) f^{\prime}(x)\right)$. Then use the fact that $f(x) f(x)=x$ along with out power rule (i.e. $(f(x) f(x))^{\prime}=(x)^{\prime}=1$) to get the other side of the equation. Since we know $f(x)=x^{1 / 2}$ you can replace $f(x)$ with $x^{1 / 2}$ where it appeared in the product rule. Finally, solve your equation for $f^{\prime}(x)$. Put this all together and state your result. Can you derive any other rules like this?

