Homework 3.2, Trig Summer 2009

June 29, 2009

In class we talked about the formulas

 $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$ $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha).$

The point of this homework is to show you how a lot other formulas come from this one.

- 1. In this problem we are going to derive the sum of angles formula for sine only using the sum of angles formula for cosine and some phase shift information.
 - (a) Explain why $\cos(\alpha + \pi/2) = -\sin(\theta)$, (Do this either using the a unit circle or a graph of the function)
 - (b) Prove that $\cos(\alpha + \pi/2) = -\sin(\alpha)$, using the sum of angles formula for cosine. (Hint: Let $\beta = \pi/2$ in the sum of angles formula for $\sin(\beta)$.)
 - (c) Prove that $\sin(\theta + \pi/2) = \cos(\theta)$ using the formula in the previous problem (Hint: Let $\alpha = \theta + \pi/2$ and use the fact that $\cos(\theta + \pi) = -\cos(\theta)$.
 - (d) Using the sum of angles formula for cosine derive the sum of angles formula for sine. (Hint: Let $\alpha = \theta + \pi/2$ in the sum of angles formula for cosine.)
- 2. I want you to prove the double angle formulas in this exercise using the formula for the sum of two angles.
 - (a) Using the sum of angles formula sine prove the double angle formula for sine:

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta).$$

(Hint: it's one line).

(b) Using the sum of angles formula for cosine, prove the double angle formula for cosine:

$$\cos(2\theta) = \cos(\theta)^2 - \sin(\theta)^2.$$

3. Using part (b) of the previous problem show that

$$\cos(x) = 1 - 2\sin(x/2)^2.$$

Here are some steps:

- (a) First make a substitution $\theta = x/2$.
- (b) Use the fact that $\cos(x/2)^2 + \sin(x/2)^2 = 1$ to finish.