Math 150 - Summer 2008 - Taylor Dupuy

Homework v4

week 1 ($6 / 09 / 08-6 / 13 / 08)$
Cartesian Coordinates 1. working with rational expressions 1.4: 7,11-15, 21,25,27,31,35-39,43,45,5157
2. equations as sets of points 1.8: 47,49,55,63,71-93
3. identifying the isosceles triangle 1.8: 31

Review of Basic Functions 1. converting instructions in English to functions 2.1: 1-7
2. combining functions 2.1: $15-19,25-28$
3. independent and dependent variables: 2.2: 61-71 (ignore the parts questions asking about range and domain).
4. graph the functions by making a table 2.2: 11,13,17,23,25,31-35 (ignore the parts of the question asking about range and domain).
5. setting up functions 2.6: 5-13,17,21,23,27,29 (special rel)
6. combining functions: 2.7: 19-27,31-37,41,45,47 (ignore the parts of the question asking about range and domain)
7. setting up functions: 2.7: 57-61,62

Logs and Exponentials 1. exponential functions: 4.1: 1,3
2. equations with logs and exponentials, graphs of logs and exponentials: 4.2: $1,5,7,11,17,19,23,27,29,37,39$
3. manipulation of logs: 4.3: $3-9,21,27,33,41-45,51$
4. exponential equations 4.4: $5,17,23$
5. \log equations 4.4: 41,47,49
week 2 (6/16/08-6/20/08)
Applications Of Logarithmic and Exponential Functions 1. applications of the exponential function: 4.1: 65,67(a)(b)
2. application of logs: $4.467,71,75,77$
3. more applications of Logs and Exponentials 4.5: 3,5,9,11,15-27

Quadratic Functions 1. quadratic functions: 2.5: 9, 13, 17, 19, $23,33,35,39,41,49$
2. applications of quadratic functions: 2.5: 59-65 applications

Polynomials and the Fundamental Theorem of Algebra 1. graphs of polynomials: 3.1: $1-5,9,13,17,20,21$
2. polynomials involving other functions, sketching graphs and factoring: 3.1: 25-31,35
3. local maxima and minima of polynomials 3.1: 49,59
4. polynomial division 3.2 : $1-9,13,17,25,27,33,37,39,47$
5. factoring of monomials: 3.2: 51-65
6. rational and real zeros of polynomials $3.3: 11-15,27-31,41,43,47,51-55$
7. complex numbers 3.4 : $11,13,17,21-25,31-35,39,41,45,47,51,53$
8. polynomials with complex roots: 3.4: 57,61,65 find roots (complex numbers)
9. multiplicity, degree and The Fundamental Theorem of Algebra 3.5: 7,9,13,19,21,33-45,49,59,61

Extra Credit 1. roots of unity and polynomials of odd degree: 3.5: 69, 70
2. cubic formula (as opposed to the quadratic formula): 3.3: 101,102
3. prove Descartes rules of signs
week 3 (6/23/08-6/27/08)

More on Polynomials 1. polar coordinates for complex numbers: 8.3: 11,13,25,27,37,42; 49,51,53,55 (for the ones ≥ 49 rewrite in $r e^{i \theta}$ form, then do the multiplication. Make sure you convert degrees to radians).
2. asymptotes, intercepts and transformations of rational functions: 3.6: 1,3,7,9,17-23, $27,29,33,39,49,51,57-61$
3. polynomials and logs in the same equation: 4.4: $27,29,31,33$

Domain and Range, Sets, and the Set Theoretical Definition of a Function 1. Exercises on Sets (Found on Webpage)
2. regions in the plane from sets: 1.8: 17,21-25,29 inequalities for regions in the plane
3. the domain of functions 2.1: 41-51,55
4. Find the domain of the function: 2.7: 7-11
5. domain, range and asymptotes for logs: 4.1: 5-25,29-41
6. revisiting independent and dependent variables: 2.2: 61-71 (when a function does have an inverse find it's domain).
7. piecewise functions 2.1: 21-23
8. parametric functions 10.7: $3-9,23,25$
9. graph the following piecewise functions 2.2: 39-45,53
week $4(6 / 30 / 08-7 / 03 / 08)$
Inverse Functions 1. one-to-oneness, verify inverses: 2.8: 9,11,17,27,29 one-to-one, verify inverses
2. finding and sketching inverses: 2.8: $37-47,51,53$, finding and sketching inverses
3. setting up function inverses: $2.871,75$
4. domain, range, and asymptotes for logs and exponentials: 4.2: 49,55,59-63

Symmetry and Asymptotes transformations of functions: 2.4: 3-9, 13-19, 41,42,44, 47,53 test for Symmetry of functions : 2.4 55,61-67 asymptotes for logs and exponentials: 4.2: 49,55,59-63 (just identify the asymptotes)

The Difference Quotient 1. finding the difference quotient: 2,1: 29-35
2. difference quotient 1.4: $61,63,67,69,75,77,93$ (simplify and identify the function you are taking the difference quotient of)
3. difference quotient for the exponential function 4.1: 43
4. average rates of change, max's and mins: 2.3: 13,15,19-27, 31-39
week $5(7 / 07 / 08-7 / 11 / 08)$
Derivatives 1. Derivative Problems (on Webpage).
week 6 ($7 / 14 / 08-7 / 18 / 08$)
Systems of Equations 1. nonlinear systems of equations: 9.1: 3,11,19,21,25,27,31,41
2. applications of nonlinear systems of equations: 9.1: 47,49
3. linear equations: 9.2 : $13,21,23$
4. applications of linear equations 9.2 45-57
5. linear equations in three variables: 9.3: 5,7,11-17,21-25
6. applications of linear equations in three variables: $9.336,35$

Matrices 1. systems of equations as matrices, gaussian elimination: 9.4: 7,9,15,19,23-27,39
2. matrix equations: 9.5:11-15 matrix equations
3. matrix operations: $9.5: 21-27,31,35$ matrix operations
4. matrix equations applications: $39-45,47,49$ (stochasticrandom walks)
5. 2by2 inverses: 9.6: 1,5-11, 2by2 inverses
6. higher order inverses: $19,25,27,37$, higher order inverses
7. application of matrix inverses: 47 (a)(b) application
week $7(7 / 21 / 08-7 / 25 / 08)$
Conics 1. Parabolas: 10.1:1-5,11-15,25,29,35,39,49
2. Ellipses: $10.2: 1,3,7,9,19-23,29,31,35,47,49,51$
3. Hyperbolas: $10.3: 1,3,7,11,13,19,21,31-35$
week $8(7 / 28 / 08-7 / 30 / 08)$

