Practice Test 1

Math 150 -Dupuy

June 23, 2008

No calculators. You must work on the test by yourself.

1. Simplify the rational expression

$$
\frac{\frac{1}{x}-\frac{1}{y}}{\frac{1}{x}+\frac{1}{y}}
$$

2. Verify that the equation

$$
x^{2}+y^{2}-10 x+4 y+20=0
$$

defines a circle. At what point is the circle centered? What is the radius of the circle?
3. Find an expression for the surface area of a cube as a function of its Volume.
4. Graph $y=2^{x-2}+4$.
5. Let $f(x)=x^{2}+2, g(x)=e^{x}$ and $h(x)=1 / x$,
(a) Compute $(f \circ g \circ h)(x)$.
(b) Compute $(g \circ f \circ g)(x)$.
6. Let $f(x)=x^{2}-4 x+8$.
(a) Express $f(x)$ in standard form $f(x)=c\left(x-x_{0}\right)^{2}+b$.
(b) Where does f achieve its maximum or minimum?
(c) Graph $f(x)$.
7. Solve the following equations for x :
(a) $e^{x^{2}+2}=14$.
(b) $\ln (x+1)+\ln (x)=\frac{1}{2}$.
8. Radioactive decay is modeled by the equation $m(t)=m_{0} e^{-k t}$, where t is in days and $m(t)$ is in grams.
(a) If the half-life of the element is $t=\ln 2$ days find the constant k. (half life is the time it takes for the mass to be reduced by half.)
(b) If in three days the mass remaining is $e^{-3} \mathrm{~kg}$ find how much mass there was at time $t=0$.
9. Expand the expression

$$
\ln \left(\frac{\sqrt{x+1}(x-1)}{x^{6}}\right)
$$

10. State the Fundamental Theorem of Algebra correctly.
11. Given the information about the polynomial, find its explicit formula:
(a) $P(x)$ is a polynomial of degree 3 with $r_{1}=1$ as a root of multiplicity 2 , and $r_{2}=2$ as a root of multiplicity 1 . In addition $P(x)$ satisfied $P(0)=1$.
(b) $f(x)$ is a polynomial of degree 3 with integer coefficients. It has $r_{1}=3$ and $r_{2}=-2 i$ as roots.
12. Factor the polynomials completely:
(a) $x^{3}-27$.
(b) $x^{4}+2 x^{2}-15$.
13. Consider the polynomial $f(x)=x^{5}-x^{4}-x^{3}-x^{3}-x-2$.
(a) Verify that $r=2$ is a root of $f(x)$.
(b) Using the division algorithm, factor of the term of $f(x)$ corresponding to the root $r=2$.
14. Consider the polynomial $f(x)=x^{4}-3 x^{3}+3 x^{2}-3 x+2$.
(a) According to the rational roots theorem what are the possible rational roots of $f(x)$?
(b) I'll tell you that all of the rational roots of this polynomial are positive numbers, factor it completely. (This part included testing for rational roots, finding a factor of degree 2)
15. Write the following complex numbers in the form $a+i b$.
(a) $\frac{1+i}{1-i}$.
(b) $\frac{1}{2+i}-\frac{2}{2-i}$.
16. (Extra Credit) Who was the mathematician that related the number $e=2.71828182 \ldots$ to the compounding interest problem?
