Practice Test 1

Math 150 — Dupuy

June 23, 2008

No calculators. You must work on the test by yourself.

1. Simplify the rational expression

$$\frac{\frac{1}{x} - \frac{1}{y}}{\frac{1}{x} + \frac{1}{y}}$$

2. Verify that the equation

$$x^2 + y^2 - 10x + 4y + 20 = 0$$

defines a circle. At what point is the circle centered? What is the radius of the circle?

- 3. Find an expression for the surface area of a cube as a function of its Volume.
- 4. Graph $y = 2^{x-2} + 4$.
- 5. Let $f(x) = x^2 + 2$, $g(x) = e^x$ and h(x) = 1/x,
 - (a) Compute $(f \circ g \circ h)(x)$.
 - (b) Compute $(g \circ f \circ g)(x)$.
- 6. Let $f(x) = x^2 4x + 8$.
 - (a) Express f(x) in standard form $f(x) = c(x x_0)^2 + b$.
 - (b) Where does f achieve its maximum or minimum?
 - (c) Graph f(x).
- 7. Solve the following equations for x:

(a)
$$e^{x^2+2} = 14$$
.

- (b) $\ln(x+1) + \ln(x) = \frac{1}{2}$.
- 8. Radioactive decay is modeled by the equation $m(t) = m_0 e^{-kt}$, where t is in days and m(t) is in grams.
 - (a) If the half-life of the element is $t = \ln 2$ days find the constant k. (half life is the time it takes for the mass to be reduced by half.)
 - (b) If in three days the mass remaining is e^{-3} kg find how much mass there was at time t = 0.
- 9. Expand the expression

$$\ln(\frac{\sqrt{x+1}(x-1)}{x^6})$$

- 10. State the Fundamental Theorem of Algebra correctly.
- 11. Given the information about the polynomial, find its explicit formula:
 - (a) P(x) is a polynomial of degree 3 with $r_1 = 1$ as a root of multiplicity 2, and $r_2 = 2$ as a root of multiplicity 1. In addition P(x) satisfied P(0) = 1.
 - (b) f(x) is a polynomial of degree 3 with *integer coefficients*. It has $r_1 = 3$ and $r_2 = -2i$ as roots.

- 12. Factor the polynomials completely:
 - (a) $x^3 27$. (b) $x^4 + 2x^2 - 15$.
- 13. Consider the polynomial $f(x) = x^5 x^4 x^3 x^3 x 2$.
 - (a) Verify that r = 2 is a root of f(x).
 - (b) Using the division algorithm, factor of the term of f(x) corresponding to the root r = 2.
- 14. Consider the polynomial $f(x) = x^4 3x^3 + 3x^2 3x + 2$.
 - (a) According to the rational roots theorem what are the possible rational roots of f(x)?
 - (b) I'll tell you that all of the rational roots of this polynomial are positive numbers, factor it completely. (This part included testing for rational roots, finding a factor of degree 2)
- 15. Write the following complex numbers in the form a + ib.
 - (a) $\frac{1+i}{1-i}$.

(b)
$$\frac{1}{2+i} - \frac{2}{2-i}$$
.

16. (Extra Credit) Who was the mathematician that related the number e = 2.71828182... to the compounding interest problem?