Practice Test 2

Dupuy —Math 150 —Summer 2008

July 8, 2008

- 1. Find the average slope of the function $f(x) = x^2 + 3x + 1$ on the interval [0, 1].
- 2. Find the average slope of the function $f(x) = 2^x + x^2$ on the interval [2,3].
- 3. Let $f(x) = xe^x$. You'll need the information that f(x) has a minimum at x = -1 to solve the following problem.
 - (a) Graph f(x).
 - (b) Restrict the domain of f(x) to $(-1, \infty)$. Using the graph of f(x), graph its inverse.
 - (c) What is the domain of $f^{-1}(x)$?
- 4. Assume the following functions are real valued. Find the maximal domain of definition for the function and find the image of the functions.
 - (a) $f(x) = x^3$.
 - (b) $f(x) = \sqrt{x+2}$.
 - (c) $f(x) = \frac{1}{\sqrt{x+2}}$.
 - (d) $f(x) = \frac{1}{x} + \sqrt{x+1}$.
- 5. Determine which functions are even or odd or neither. Show your work
 - (a) $f(x) = x^2 + 2$.
 - (b) f(x) = 5.
 - (c) $f(x) = 2^x + 2^{-x}$.
 - (d) $f(x) = 2^x + 1$.
- 6. Compute the difference quotient for $f(x) = x^3 + x^2 + x + 1$.
- 7. Let $z_1 = -1 + i$ and $z_2 = \sqrt{3} + i\sqrt{3}$.
 - (a) Plot z_1 and z_2 in the complex plane.
 - (b) Convert z_1 and z_2 to polar coordinates.
 - (c) Multiply z_1 and z_2 , then plot z_1z_2 in the complex plane.
- 8. Let $f(x) = \frac{x^2 + 2x 15}{x^2 + 2x}$. Find the *x*-intercepts, *y*-intercepts, vertical asymptotes and horizontal asymptotes. Make a complete graph of the function.
- 9. Solve for x:

$$e^{2x} - 4e^x + 4 = 0.$$

10. Graph the function

$$f(x) = \begin{cases} x, & x < 0\\ \sqrt{x}, & 0 \le x < 1\\ x^3, & x \le 1 \end{cases}$$

11. What is wrong with f(x) in the following definition:

$$f(x) = \begin{cases} 2, & x \le 0\\ x, & 0 \le x \le 2\\ x^2/2, & 2 \le x \end{cases}$$

12. (Extra Credit)

- (a) Explain how to enumerate (list) all the rational numbers in between 0 and 1.
- (b) Explain why you can't number off all the real numbers in between 0 and 1.