Practice Test 3

Dupuy - Math 150 - Summer 2008

July 25, 2008

1. State the definition of a derivative of function $f(x)$ at a point x_{0}.
2. Compute the derivative of the function $f(x)=x^{3}$ via a difference quotient.
3. Complete the following rules for derivatives. Below, $f(x)$ and $g(x)$ are functions, $c \in \mathbb{R}$ and $n \in \mathbb{N}$.
(a) $\frac{d}{d x}[c]=$
(b) $\frac{d}{d x}[f(x)+g(x)]=$
(c) $\frac{d}{d x}\left[x^{n}\right]=$
4. (a) State the product rule.
(b) Prove the product rule by using the definition of the derivative (as in the homework).
5. Compute the derivatives of the following polynomials
(a) $-2 x^{3}+x+1$
(b) $x^{500}+1500$
(c) $\alpha x^{4}+5 \beta x^{2}-2 \gamma x$, where α, β and γ are real numbers.
6. Find all the solutions of the system

$$
\left\{\begin{array}{c}
y=x^{2}-2 x+2 \\
y=x^{2}-2 x
\end{array}\right.
$$

7. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(a) Suppose A is invertible. State the formula for A^{-1}.
(b) Compute the inverse of $B=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
8. Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{lll}2 & 3 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 2\end{array}\right)$. Compute $A B$.
9. Put the following 3×3 system of into matrix form and solve by Gaussian Elimination

$$
\left\{\begin{array}{c}
x-z=2 \\
-2 x+y+2 z=0 \\
-6 x+3 y+7 z=1
\end{array}\right.
$$

10. (Extra Credit) Define what an eigenvector of a Matrix is. Define what an eigenvalue of a matrix is. Compute the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \tag{1}\\
1 & 2
\end{array}\right)
$$

