# Exercises On Sets 

Math 150 -Dupuy

June 23, 2008

1. Let $A=\{1,2,3,4,5\}$ and $B=\{2,4,6,8,10\}$. Compute the following sets.
(a) $A \cap B$.
(b) $A \cup B$.
(c) $A \backslash B$.
(d) $B \backslash A$.
(e) $A \times B$.
(f) $\{a \in A: a$ is even $\}$.
(g) $\{x \in A: x+1 \in B\}$.
(h) $\{x \in A: x+1 \in B$ or $x+5 \in B\}$.
2. Let $A=\mathbb{N}$ and let $B=\{n \in \mathbb{N}: n$ is even $\}$. Find the following sets
(a) $A \cap B$.
(b) $A \cup B$.
(c) $A \backslash B$.
(d) $B \backslash A$.
3. Order the following sets via inclusion. Example: the sets $\{1,2,3\},\{2\},\{2,1\}$ satisfy

$$
\{2\} \subset\{2,1\} \subset\{1,2,3\}
$$

(a) $\{1,2,4\}, \mathbb{N},\{1,2\}, \emptyset$
(b) $\mathbb{R}, \mathbb{C}, \mathbb{Z}, \mathbb{Q}, \mathbb{N}$.
4. State the precise definition of a function.
5. If the domain for a function is $A=\{1,2,3,4,5\}$ and the range is $B=\} 1,2,3,4,5\}$ determine if the following relations are functions. If they aren't, explain what part of the function definition they violate.
(a) $S=\{(1,2),(2,3),(3,4),(4,5),(5,4)\}$.
(b) $T=\{(1,2),(1,3),(2,4),(3,5),(5,1)\}$.
(c) $U=\{(1,1),(2,1),(3,1),(4,1),(5,1)\}$.
(d) $V=\{(1,1),(2,1),(3,1),(4,1)\}$
6. Write the following sets using set notation. Example $(1,6)=\{x \in \mathbb{R}: 1<x<6\}$.
(a) $[0,2)$
(b) $(-\infty, 2)$
(c) $[-1,1]$
7. Find $y$ as a function of $x$. In each case, specify how many functions the relations below determine. Also, when specifying a function $y=f(x)$ state a range and a domain for $f$ in set notation, assume that $f$ is a real valued function. Example: If $f(x)=1 / x$ then $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$.
(a) $x^{2}+2 y=4$
(b) $x=y^{2}$
(c) $x^{2} y^{2}+y=1$
8. Find the image of the following functions. Remember: the image of a functions $f: A \rightarrow B$ is defined by $\operatorname{Im}(f)=\{f(a) \in B: a \in A\}$.
(a) $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=2 n$.
(b) $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y)=x^{2}+y^{2}$.
9. The Dirichlet function $D: \mathbb{R} \rightarrow\{0,1\}$ is defined by

$$
f(x)=\left\{\begin{array}{lc}
0, & x \in \mathbb{Q} \\
1, & x \text { not in } Q
\end{array}\right.
$$

what is the image of $f$ ?

